

December 24, 2014

Ms. Robin Futch Georgia Department of Natural Resources Response and Remediation Program 2 Martin Luther King, Jr. Drive S.E. Suite 1462, East Tower Atlanta, Georgia 30334-9000

RE: Voluntary Remediation Program Semi-Annual Progress Report #5
Tara Shopping Center

8564 Tara Boulevard, Jonesboro, Clayton County, Georgia

Tax Parcel ID 13242D B001; HSI Site No. 10798

Dear Ms. Futch,

On behalf of Ashland Inc. (Ashland), EHS Support LLC (EHS Support) is submitting this Semi-Annual Progress Report for the project referenced above. The purpose of this progress report is to provide a summary of activities completed under the Voluntary Remediation Program between July 2014 and December 2014. A summary of professional service time is provided as **Attachment A**.

1.0 Source Area Remediation Performance Monitoring

On June 22 and 23, 2014, the first post soil remediation groundwater sampling event was completed approximately eight months after completion of in-situ solidification/stabilization soil treatment activities at the former dry cleaning site (8564 Tara Boulevard). In response to source area remediation of unsaturated and saturated soils, Ashland proposed to implement a semi-annual monitoring event to evaluate the responsiveness of groundwater in the vicinity of treated soil.

Groundwater samples were collected from 14 monitoring wells (MW-3A/3B, MW-8A/8B/8C, MW-9A/9B/9C, MW-10A/10B/10C and MW-11A/11B/11C). These wells are immediately down gradient and cross gradient of the soil treatment area and are screened with the upper (A) and lower (B) residuum, and shallow bedrock (C) zones. Refer to **Figure 1.** Groundwater samples were collected using low flow purging and sampling techniques in accordance with United States Environmental Protection Agency Operating Procedure SESDPRPC-301-R3. Groundwater samples were sent to TestAmerica Savannah and analyzed for volatile organic compounds (VOCs) using USEPA SW846 method 8260B. A copy of the groundwater sampling logs is provided as **Attachment B**. A copy of the analytical laboratory report is provided on a compact disk as **Attachment C**.

A brief summary of results is provided below. A tabulated summary of analytical results is provided on **Table 1** and presented on **Figure 2**.

Residuum Monitoring Wells

Tetrachloroethene and trichloroethene continue to be detected above the Type 1 Risk Reduction Standard of 5 micrograms per liter in upper residuum monitoring wells MW-3A, MW-8A, MW-9A, and MW-10A and lower residuum monitoring wells MW-8B, MW-10B, and MW-11B. Degradation compound cis-1,2-

dichloroethene was detected in monitoring wells with PCE concentrations exceeding 200 micrograms per liter. Vinyl chloride was not detected in monitoring well sampled.

Bedrock Monitoring Wells

No VOCs were detected above the Type 1 RRS in bedrock monitoring wells sampled during performance monitoring. Tetrachloroethene was detected in bedrock monitoring MW-10C at a concentration of 3.2 micrograms per liter below the Type 1 RRS. Monitoring well cluster MW-10A/10B/10C is located immediately down gradient of the soil treatment area. Refer to **Figure 2**.

Performance Discussion

Analytical results indicate that on-site groundwater down gradient of the soil treatment area has yet to demonstrate response to soil remediation. Based on soil conditions (silty clay), slow response in groundwater is anticipated. Three more semi-annual events will be complete to monitor changes in groundwater concentrations near the soil treatment area. The next sampling event is scheduled for January 2015. The results will be presented in the next semi-annual progress report due to the agency by June 28, 2015.

2.0 Environmental Covenant

A copy of the draft Environmental Covenant specifying the Type 5 restricted use area and site-wide groundwater use restrictions proposed for the property (Tara Shopping Center); and, the draft Monitoring and Maintenance Plan is provided as **Attachment D**. The Environmental Covenant has been updated to reflect the current format changes requested by Georgia EPD. Ashland is requesting EPD's feedback on these documents prior to submittal to the property owner for review and signature.

3.0 Off-Site Groundwater Investigation

3.1 Well Installation

Between August 25, 2014 and September 4, 2014, five monitoring wells were installed southeast and southwest of the Tara Shopping Center. The objective of these monitoring wells was to horizontally delineate groundwater impacts suspected to be from the former dry cleaner property and suspected secondary preferential pathways south of the Site (storm sewer). A summary of the activities is provided below.

Flint River Shopping Center (8639 Tara Boulevard)

One bedrock monitoring well (MW-19D) was installed adjacent to existing monitoring well cluster MW-19A/19B/19C. One deep residuum and one bedrock monitoring well (MW-21B and MW-21C) were installed approximately 815 feet west and down gradient of MW-19D. Refer to **Figure 1**.

177 College Street

Two monitoring wells MW-22A and MW-22B were installed within the upper and lower residuum at 177 College Street, approximately 530 feet southeast of monitoring well cluster MW-13A/B/C. Refer to **Figure 1**.

Monitoring wells were installed using Sonic drilling technology. Monitoring wells locations MW-19D, MW-21C, and MW-22B were continuously logged to total depth to record lithology conditions. Each monitoring well is constructed of a two-inch diameter PVC well casing with a 10-foot screen (0.010-inch slot). A permanent 6-inch steel casing was installed at monitoring wells MW-19D and MW-22C to inhibit the potential for vertical migration of constituents of concern during drilling and well installation activities. Each monitoring well is completed with a locking expansion well cap, flush mount cover and was developed to remove fine materials. A summary of well constructions details is provided on **Table 2**. Soil boring and monitoring well construction logs are currently under construction and will provided as a supplement to **Attachment E.** Completed soil boring and well construction logs for monitoring wells MW-18A/B, MW-19A/B/C and MW-20C installed in 2012 will also be provided.

3.2 Survey

Newly installed monitoring wells were surveyed by Travis Pruitt & Associates on November 14, 2014. Existing monitoring wells MW-10A/B/C, MW-11A/B/C and MW-17A were also resurveyed. The geologic cross sections were updated with information obtained from new wells. A cross section location map is provided as **Figure 3**. The lithologic cross sections are presented on **Figure 4**.

3.3 Initial Sampling Event

On November 19 and 20, 2014, groundwater samples were collected from the newly installed monitoring wells (MW-19D, MW-21B/21C and MW-22A/22B) and monitoring wells MW-19A/B/C. Groundwater samples were collected using low flow purging and sampling techniques in accordance with United States Environmental Protection Agency Operating Procedure SESDPRPC-301-R3. Groundwater samples were sent to TestAmerica Savannah and analyzed for VOCs using USEPA SW846 method 8260B. A copy of the groundwater sampling logs is provided as **Attachment B**. A copy of the analytical laboratory report is provided on a compact disk as **Attachment C**.

A brief summary of results is provided below. A tabulated summary of analytical results is provided on **Table 3** and presented on **Figure 5**.

Monitoring well cluster MW-22A/MW-22B

No VOCs were detected above the laboratory report limits at monitoring well cluster MW-22A and MW-22B and indicate groundwater impacts within the residuum are not migrating in a southeast direction from impacted monitoring wells MW-13A/13B/13C.

Monitoring wells MW-21B/21C

No VOCs were detected above the laboratory report limits at monitoring wells MW-21B and MW-21C and therefore, indicate groundwater impacts associated with former dry cleaner operations have been delineated to the southwest within the residuum and bedrock water bearing zones.

Monitoring well cluster MW-19A/19B/19C/19D

Dry cleaner related VOCs were not detected above the laboratory report limits at monitoring well MW-19A (shallow residuum). However, gasoline related VOCs (benzene, ethylbenzene, and xylenes) were detected in exceedance of the Type 1 RRS. The presence of these compounds is related to separate release mechanism and are not associated with groundwater delineation activities under the current VRP program subject to the Tara Shopping Center site.

Tetrachlorethene, trichloroethene, and cis-1,2-dichlorothene were identified above the laboratory reporting limits and above the Type 1 RRSs in lower residuum and bedrock monitoring wells MW-19B/19C and 19D. A decreasing vertical concentration gradient is observed. Refer to **Figure 5**.

3.4 Gauging Event

On November 20, 2014, depth to water measurements were recorded from the entire monitoring well network with the exception of monitoring well MW-12A (was not located in the field). Depth to water measurements were recorded to the nearest 0.01-inch and were used to calculate groundwater elevation data. Refer to **Table 2**. Groundwater flow within the residuum is to the west. Groundwater flow within the bedrock is to the west and northwest. Refer to **Figure 6** through **Figure 8**.

Vertical hydraulic gradients were calculated between the residuum and bedrock water bearing zones. In general, a downward vertical flow gradient is observed between the residuum and bedrock water bearing zones (refer to **Figure 9**). In some instance the elevation gradient was near flat or depicted a slight upward gradient at monitoring well clusters MW-5B/5C, MW-9B/9C, and MW-21B/21C. Vertical gradient values are presented on **Table 2**.

4.0 Off-site Access Update

Provided below is the status of access agreements for those properties discussed on the December 16, 2014 conference call with Georgia EPD.

Parcel 13241C G015 (Undeveloped Vacant Parcel due east of Site)

Attempts to reasonably negotiate an access agreement with the property owner for the purposes of collecting groundwater data due east of 8564 Tara Boulevard have been unsuccessful. Negotiations have ceased with the landowner.

Parcel 13241C G001 (Residential property due south of property above)

As an alternate to the parcel noted above, a request for access was submitted to the owner of Parcel 13241C G001 (117 Fayetteville Road). The property owner approved access; however, upon subsequent site reconnaissance, the property is vacant and presents several access issues (i.e., utility right-of-way, overhead clearance). Further contact with the landowner was pending access to the parcel noted below. Ashland/EHS Support will send a letter to the property owner requesting a meeting to review the scope of work and location of well replacement.

Parcel 13242D A016A/A018 (Commercial property due west of Site)

Multiple unsuccessful attempts have been made to gain access to the Parcel 13242D A016A/A018 (8557 Tara Boulevard). The property owner/representative requested additional time to consider Ashland's request for access based on learning the new of potential environmental impacts at the property. Ashland attempted to contact the property representative on December 16, 2014. No response has been received at this time. Ashland is requesting the Georgia EPD's assistance with access.

5.0 Qualifying Property Status

Inclusion of additional properties within the VRP is still under evaluation.

6.0 Schedule

The next semi-annual progress report will be submitted on or before June 28, 2015.

In the interim, Ashland will continue its attempt to complete groundwater investigation activities at the locations previously discussed with the Georgia EPD. Based on the schedule outlined in Georgia EPD's VRP acceptance letter dated June 28, 2012 and subsequent discussions on December 16, 2014, Ashland is requesting a six-month extension to complete the remaining groundwater investigation work associated with off-site delineation, as well as; preparation of a groundwater remediation plan (and associated costs) to address groundwater impacts migrating off-site.

If you should have any questions regarding the information presented in this progress report, please contact me at michelle.stayrook@ehs-support.com or 412-807-1494. Alternatively you can contact Kristin VanLandingham at k.vanlandingham@ehs-support.com or 850-251-0582

Sincerely,

Michelle Stayrook EHS Support

Project Manager

Attachments

cc: Michael Dever, Ashland (email)

Michelle Stayrook

Rich Williams, Esq. Ashland (email) Eric Nathan, Tara Retail Holdings, Inc.

Amy Magee, King and Spalding

Kristin VanLandingham, P.E. EHS Support (email)

CERTIFICATION

"I certify under penalty of law that this report and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, et seq.). I am a professional engineer/professional geologist who is registered with the Georgia State Board of Registration for Professional Engineers and Land Surveyors/Georgia State Board of Registration for Professional Geologists and I have the necessary experience and am in charge of the investigation and remediation of this release of regulated substances.

Furthermore, to document my direct oversight of the Voluntary Remediation Plan development, implementation of corrective action, and long term monitoring, I have attached a monthly summary of hours invoiced and description of services provided by me to the Voluntary Remediation Program participant since the previous submittal to the Georgia Environmental Protection Division.

The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Kristin A. VanLandingham, P.E./PE035825

Printed Name and GA PE/PG Number

12/22/14

Date

Signature and Stamp

TABLES

Table 1 Post Soil Remediation Groundwater Sampling Results, July 2014 Tara Shopping Center Jonesboro, Georgia HSI 10798

Sample ID		MW-3A	MW-3B	MW-8A	MW-8B	DUP-1	MW-8C	MW-9A	MW-9B	MW-9C
Lab Sample Number		680-103647-1	680-103647-2	680-103647-3	680-103647-4	680-103647-15	680-103647-5	680-103647-6	680-103647-7	680-103647-8
Sampling Date	Type 1 Risk	7/22/2014	7/22/2014	7/23/2014	7/23/2014	7/23/2014	7/23/2014	7/23/2014	7/23/2014	7/23/2014
Matrix	Reductions	Water	Water	Water	Water	Water	Water	Water	Water	Water
Dilution Factor	Standards	1	1	10	2	1	1	5	1	1
Units		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
GC/MS VOA - 8260B		Low	Low	Low	Low	Low	Low	Low	Low	Low
Constituents of Concern										
Tetrachloroethene	5	60	1 U	550	190	150	1 U	370	1 U	1 U
Trichloroethene	5	1.1	1 U	32	2 U	1 U	1 U	230	1 U	1 U
cis-1,2-Dichloroethene	70	1 U	1 U	12	2 U	1 U	1 U	8.5	1 U	1 U
Vinyl chloride	2	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
Other VOC Compounds										
1,1,1-Trichloroethane	200	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
1,1,2,2-Tetrachloroethane	0.2	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
1,1,2-Trichloroethane	5	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
1,1-Dichloroethane	400	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
1,1-Dichloroethene	7	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
1,2-Dichloroethane	5	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
1,2-Dichloropropane	5	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
2-Butanone (MEK)	200	10 U	10 U	100 U	20 U	10 U	18	50 U	10 U	10 U
2-Hexanone	NP	10 U	10 U	100 U	20 U	10 U	10 U	50 U	10 U	10 U
4-Methyl-2-pentanone (MIBK)	200	10 U	10 U	100 U	20 U	10 U	10 U	50 U	10 U	10 U
Acetone	400	25 U	25 U	250 U	50 U	25 U	25 U	130 U	25 U	110
Benzene	5	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
Bromoform	80	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
Bromomethane	NP	5 U	5 U	50 U	10 U	5 U	5 U	25 U	5 U	5 U
Carbon disulfide	400	2 U	2 U	20 U	4 U	2 U	2.3	10 U	2 U	2 U
Carbon tetrachloride	5	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
Chlorobenzene	100	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
Chlorodibromomethane	80	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
Chloroethane	NP	5 U	5 U	50 U	10 U	5 U	5 U	25 U	5 U	5 U
Chloroform	80	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
Chloromethane	NP	1 U	1 U	10 U	2 U	1 U	1.3	5 U	1 U	1 U
cis-1,3-Dichloropropene	NP	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
Dichlorobromomethane	80	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
Ethylbenzene	700	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
Methylene Chloride	3	5 U	5 U	50 U	10 U	5 U	5 U	25 U	5 U	5 U
Styrene	100	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
Toluene	1,000	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
trans-1,2-Dichloroethene	100	1 U	1 U	10 U	2 U	1 U	1 U	7.3	1 U	1 U
trans-1,3-Dichloropropene	NP	1 U	1 U	10 U	2 U	1 U	1 U	5 U	1 U	1 U
Xylenes, Total	10,000	2 U	2 U	20 U	4 U	2 U	2 U	10 U	2 U	2 U

QUALIFIERS

μg/L - micrograms per liter

U - value not detected above the laboratory reporting limit.

Yellow - exceeds Type 1 Risk Reduction Standard for Groundwater.

Table 1 Post Soil Remediation Groundwater Sampling Results, July 2014 Tara Shopping Center Jonesboro, Georgia HSI 10798

Sample ID		MW-10A	MW-10B	MW-10C	MW-11A	MW-11B	MW-11C
Lab Sample Number		680-103647-9	680-103647-10	680-103647-11	680-103647-12	680-103647-13	680-103647-14
Sampling Date	Type 1 Risk	7/23/2014	7/23/2014	7/23/2014	7/22/2014	7/22/2014	7/22/2014
Matrix	Reductions	Water	Water	Water	Water	Water	Water
Dilution Factor	Standards	5	1	1	5	1	1
Units		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
GC/MS VOA - 8260B		Low	Low	Low	Low	Low	Low
Constituents of Concern							
Tetrachloroethene	5	480	76	3.2	5 U	19	1 U
Trichloroethene	5	82	1.8	1 U	5 U	1.8	1 U
cis-1,2-Dichloroethene	70	41	1.7	1 U	5 U	1 U	1 U
Vinyl chloride	2	5 U	1 U	1 U	5 U	1 U	1 U
Other VOC Compounds							
1,1,1-Trichloroethane	200	5 U	1 U	1 U	5 U	1 U	1 U
1,1,2,2-Tetrachloroethane	0.2	5 U	1 U	1 U	5 U	1 U	1 U
1,1,2-Trichloroethane	5	5 U	1 U	1 U	5 U	1 U	1 U
1,1-Dichloroethane	400	5 U	1 U	1 U	5 U	1 U	1 U
1,1-Dichloroethene	7	5 U	1 U	1 U	5 U	1 U	1 U
1,2-Dichloroethane	5	5 U	1 U	1 U	5 U	1 U	1 U
1,2-Dichloropropane	5	5 U	1 U	1 U	5 U	1 U	1 U
2-Butanone (MEK)	200	50 U	10 U	10 U	50 U	10 U	10 U
2-Hexanone	NP	50 U	10 U	10 U	50 U	10 U	10 U
4-Methyl-2-pentanone (MIBK)	200	50 U	10 U	10 U	50 U	10 U	10 U
Acetone	400	130 U	25 U	25 U	130 U	25 U	25 U
Benzene	5	5 U	1 U	1 U	5 U	1 U	1 U
Bromoform	80	5 U	1 U	1 U	5 U	1 U	1 U
Bromomethane	NP	25 U	5 U	5 U	25 U	5 U	
Carbon disulfide	400	10 U	2 U	2 U	10 U	2 U	2 U
Carbon tetrachloride	5	5 U	1 U	1 U	5 U	1 U	1 U
Chlorobenzene	100	5 U	1 U	1 U	5 U	1 U	1 U
Chlorodibromomethane	80	5 U	1 U	1 U	5 U	1 U	1 U
Chloroethane	NP	25 U	5 U	5 U	25 U	5 U	5 U
Chloroform	80	14	1 U	1 U	5 U	1 U	1 U
Chloromethane	NP	5 U	1 U	1 U	5 U	1 U	1 U
cis-1,3-Dichloropropene	NP	5 U	1 U	1 U	5 U	1 U	1 U
Dichlorobromomethane	80	5 U	1 U	1 U	5 U	1 U	1 U
Ethylbenzene	700	5 U	1 U	1 U	5 U	1 U	1 U
Methylene Chloride	3	25 U	5 U	5 U	25 U	5 U	5 U
Styrene	100	5 U	1 U	1 U	5 U	1 U	1 U
Toluene	1,000	5 U	1 U	1 U	5 U	1 U	1 U
trans-1,2-Dichloroethene	100	5 U	1 U	1 U	5 U	1 U	1 U
trans-1,3-Dichloropropene	NP	5 U	1 U	1 U	5 U	1 U	1 U
Xylenes, Total	10,000	10 U	2 U	2 U	10 U	2 U	2 U

QUALIFIERS

 $\mu g/L$ - micrograms per liter

U - value not detected above the laboratory reporting limit.

Yellow - exceeds Type 1 Risk Reduction Standard for Groundwater.

Table 2 Summary of Monitoring Well Construction Details Tara Shopping Center Jonesboro, Georgia HSI 10798

						,				11/2	0/2014	
Well Identification	Location	Water Bearing Unit	NORTH	EAST	Date Installed	Screen Interval (ft. bgs)	Top of Casing Elevation (ft. above MSL)	Ground Surface Elevation (ft. above MSL)	Depth to Water (Ft-TOC)	Total Depth (Ft-TOC)	Groundwate r Elevation (ft. above MSL)	Vertical Gradient (B Zone to C Zone)
MW-1A	TSC	Shallow Residuum	1280728.512'	2237033.037'	04/25/06	15.0 - 25.0	898.82	899.14	24.57	24.96	874.25	11.98
MW-1C	TSC	Bedrock	1280733.112'	2237033.284'	04/09/08	83.0 - 98.0	899.01	899.24	36.75	99.45	862.26	11.96
MW-3A	TSC	Shallow Residuum	1280375.587'	2236900.890'	05/03/06	15.0 - 25.0	892.41	892.70	23.06	25.15	869.35	
MW-3B	TSC	Deep Residuum	1280377.249'	2236899.018'	05/03/06	45.0 - 55.0	892.54	892.70	25.13	54.76	867.41	
MW-4A	Prax Air	Shallow Residuum	1280181.203'	2236835.015'	04/28/06	15.0 - 25.0	884.63	884.96	15.69	25.05	868.94	
MW-4B	Prax Air	Deep Residuum	1280181.348'	2236833.013'	04/28/06	50.0 - 60.0	884.67	884.95	16.05	59.05	868.62	
MW-5A	Prax Air	Shallow Residuum	1280100.363'	2236668.589'	05/01/06	15.0 - 25.0	883.48	883.72	15.78	24.85	867.70	
MW-5B	Prax Air	Deep Residuum	1280100.306'	2236671.167'	05/01/06	36.0 - 46.0	883.43	883.72	15.81	45.07	867.62	-0.67
MW-5C	Prax Air	Bedrock	1280104.891'	2236672.327'	04/10/08	75.0 - 90.0	883.64	883.88	15.35	90.00	868.29	-0.07
MW-6A	Citgo	Shallow Residuum	1279728.846'	2236671.977'	05/02/06	15.0 - 25.0	881.41	881.70	14.38	25.00	867.03	
MW-6B	Citgo	Deep Residuum	1279731.975'	2236672.424'	05/02/06	57.0 - 67.0	881.54	881.80	14.61	66.98	866.93	
MW-7B	TSC	Deep Residuum	1280715.758'	2236698.942'	07/26/06	23.0 - 33.0	896.93	897.15	28.15	33.03	868.78	5.02
MW-7C	TSC	Bedrock	1280721.991'	2236699.896'	04/10/08	52.0 - 62.0	896.96	897.22	33.21	61.46	863.75	3.02
MW-8A	TSC	Shallow Residuum	1280566.701'	2236692.565'	07/26/06	23.0 - 32.0	895.14	895.27	26.95	31.75	868.19	
MW-8B	TSC	Deep Residuum	1280560.472'	2236691.909'	07/26/06	47.0 - 57.0	895.02	895.26	26.87	56.98	868.15	4.97
MW-8C	TSC	Bedrock	1280563.858'	2236698.191'	04/10/08	71.0 - 85.0	895.04	895.27	31.85	84.83	863.19	4.97
MW-9A	TSC	Shallow Residuum	1280322.572'	2236787.591'	07/25/06	20.0 - 30.0	891.65	892.20	23.09	30.25	868.56	
MW-9B	TSC	Deep Residuum	1280322.327'	2236784.381'	07/25/06	52.0 - 62.0	892.08	892.20	23.65	62.45	868.43	-0.49
MW-9C	TSC	Bedrock	1280324.370'	2236794.105'	04/10/08	85.0 - 100.0	891.92	892.10	23.00	99.63	868.92	-0.49
MW-10A	TSC	Shallow Residuum	1280585.085	2236821.807	02/19/08	27.0 - 37.0	896.76	897.09	27.69	37.45	869.07	
MW-10B	TSC	Deep Residuum	1280579.915	2236821.438	02/19/08	40.0 - 50.0	896.55	896.95	27.52	39.78	869.03	4.59
MW-10C	TSC	Bedrock	1280582.817	2236815.571	04/10/08	75.0 - 90.0	896.65	896.99	32.21	88.05	864.44	4.39
MW-11A	L6 Clay	Shallow Residuum	1280466.509	2236756.783	02/20/08	20.0 - 30.0	893.90	894.24	25.31	30.12	868.59	
MW-11B	L6 Clay	Deep Residuum	1280463.558	2236757.917	02/20/08	46.0 - 56.0	893.79	894.18	25.48	56.25	868.31	0.33
MW-11C	L6 Clay	Bedrock	1280472.559	2236756.909	04/10/08	73.0 - 88.0	894.06	894.41	26.08	87.94	867.98	0.55
MW-12A	TSC	Shallow Residuum	1280321.765'	2236875.509'	02/20/08	20.0 - 30.0	891.28	891.30	NM	NM	NM	
MW-13A	Prax Air	Shallow Residuum	1280082.189'	2236795.410'	03/27/08	14.0 - 24.0	881.08	881.35	12.51	24.25	868.57	
MW-13B	Prax Air	Deep Residuum	1280078.396'	2236796.676'	03/27/08	62.0 - 72.0	881.09	881.30	12.78	71.88	868.31	0.11
MW-13C	Prax Air	Bedrock	1280075.012'	2236789.963'	10/15/08	78.0 - 89.0	881.16	881.36	12.95	87.95	868.21	0.11
MW-14A	TSC	Shallow Residuum	1280801.156'	2237045.556'	02/20/08	25.0 - 35.0	899.70	899.86	24.13	33.72	875.57	
MW-15A	ROW	Shallow Residuum	1280328.845'	2236505.020'	09/18/08	27.5 - 37.5	888.05	888.30	23.27	37.48	864.78	
MW-15B	ROW	Deep Residuum	1280326.051'	2236505.009'	09/19/08	38.5 - 48.5	888.09	888.30	24.19	46.19	863.90	
MW-16A	ROW	Shallow Residuum	1280125.982'	2236472.356'	09/18/08	22.0 - 32.0	879.48	879.90	13.00	32.43	866.48	
MW-16B	ROW	Deep Residuum	1280123.708'	2236471.983'	09/19/08	34.0 - 44.0	879.65	879.90	13.63	43.46	866.02	2.48
MW-16C	ROW	Bedrock	1280125.771'	2236466.812'	10/14/08	58.0 - 68.0	878.84	878.97	15.29	68.08	863.55	2.40
MW-17A	L6 Clay	Shallow Residuum	1280465.519	2236771.510	03/30/11	20.0 - 30.0	NS	894.33	25.51	29.55	NS	
MW-18A	Al Karim	Shallow Residuum	1280203.854'	2236773.758'	11/27/12	20.0 - 30.0	888.29	888.63	18.55	30.09	869.74	
MW-18B	Al Karim	Deep Residuum	1280203.918'	2236766.192'	11/27/12	47.0 - 57.0	888.23	888.60	19.59	56.59	868.64	

Table 2 Summary of Monitoring Well Construction Details Tara Shopping Center Jonesboro, Georgia HSI 10798

Well Identification	Location	Water Bearing Unit	NORTH		Date Installed	Screen Interval (ft. bgs)	Top of Casing Elevation	Elevation (ft. above	Depth to Water (Ft-TOC)	Total Depth (Ft-TOC)	(ft. above	Vertical Gradient (B Zone to C Zone)
MW-19A	FRSC	Shallow Residuum	1279961.327'	2236383.957'	12/05/12	25.0 - 35.0	879.94	880.10	14.87	34.21	865.07	
MW-19B	FRSC	Deep Residuum	1279956.697'	2236394.100'	12/05/12	50.0 - 60.0	880.17	880.32	15.11	60.16	865.06	0.41
MW-19C	FRSC	Bedrock**	1279959.255'	2236388.719'	12/04/12	75.0 - 85.0	880.01	880.21	14.86	84.96	865.15	0.41
MW-19D	FRSC	Bedrock	1279953.241	2236386.749	09/02/14	95.5 105.5	880.08	880.35	15.43	98.46	864.65	
MW-20C	FRSC	Bedrock	1280248.661'	2236113.374'	12/04/12	35.0 - 45.0	875.44	875.75	19.51	44.97	855.93	
MW-21B	FRSC	Deep Residuum	1279878.704	2235996.082	08/29/14	29.5 39.5	871.40	871.74	14.93	39.45	856.47	-0.46
MW-21C	FRSC	Bedrock	1279873.218	2235995.793	08/29/14	64.5 74.5	871.41	871.76	14.48	72.19	856.93	-0.40
MW-22A	ADC	Shallow Residuum	1279884.097	2236968.133	09/03/14	20.0 30.0	883.00	883.54	14.69	30.00	868.31	
MW-22B	ADC	Deep Residuum	1279883.763	2236973.609	09/03/14	67.0 77.0	883.29	883.61	14.64	75.99	868.65	
STREAM												
GUAGE	SG	NA	1280380.947'	2236135.807'	07/24/13	NA NA	854.74	851.39	2.83	NA	851.91	

Notes:

ft. bgs = feet below ground surface

MSL = Mean Sea Level

NA = Not Applicable

NM = Not Measured

NS = Not Surveyed

* Well TOC not surveyed - not accessible.

** Well reclassifed as Bedrock well

Notes (Cont'd)

TSC = Tara Shopping Center - 8564 Tara Shopping Center

Al Karim = Commerical Parcel

Ctigo = Gas Station

L6 Clay = Vacant Commerical Parcel

ROW = County/City Right of Way

Prax Air = Commerical Parcel

FRSC = Flint River Shopping Center

ADC = What A Day - Adult Day Care

Table 3 Groundwater Analytical Results - New Wells, November 2014 Tara Shopping Center Jonesboro, Georgia HSI 10798

Sample ID		MW-19A	MW-19B	MW-19C	MW-19D	MW-21B	Dup-1	MW-21C	MW-22A	MW-22B
Lab Sample Number	1	680-107535-6	680-107535-9	680-107535-8	680-107535-7	680-107535-5	680-107535-10	680-107535-4	680-107535-2	680-107535-3
Sampling Date	Type 1 Risk	11/19/2014	11/19/2014	11/19/2014	11/19/2014	11/19/2014	11/19/2014	11/19/2014	11/19/2014	11/19/2014
Matrix	Reductions	Water	Water	Water	Water	Water	Water	Water	Water	Water
Dilution Factor	Standards	5	5	2	1	1	1	1	1	1
Units	1	ug/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
GC/MS VOA - 8260B	1	Low	Low	Low	Low	Low	Low	Low	Low	Low
Constituents of Concern										
Tetrachloroethene	5	5 U	870	290	94	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	5 U	67	18	7.1	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	70	5 U	100	33	13	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	2	5 U	5 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U
Other VOC Compounds										
1,1,1-Trichloroethane	200	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	0.2	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	5	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
1,1-Dichloroethane	400	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
1,1-Dichloroethene	7	5 U		2 U	1 U		1 U	1 U	1 U	1 U
1,2-Dichloroethane	5	86	5 U	2 U	1 U		1 U	1 U	1 U	1 U
1,2-Dichloropropane	5	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
2-Butanone (MEK)	200	50 U	50 U	20 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone	NP	50 U	50 U	20 U	10 U	10 0	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone (MIBK)	200	50 U	50 U	20 U	10 U		10 U	10 U	10 U	10 U
Acetone	400	50 U	50 U	20 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	5	1600 D	5 U	2 U	1 U		1 U	1 U	1 U	1 U
Bromoform	80	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
Bromomethane	NP	25 U	25 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U
Carbon disulfide	400	10 U	10 U	4 U	2 U		2 U	2 U	2 U	2 U
Carbon tetrachloride	5	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
Chlorobenzene	100	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
Chlorodibromomethane	80	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
Chloroethane	NP	25 U	25 U	10 U	5 U		5 U	5 U	5 U	5 U
Chloroform	80	5 U	5 U	2 U	11	1 U	1 U	2.3	1 U	23
Chloromethane	NP	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	NP	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
Dichlorobromomethane	80	5 U	5 U	2 U	1 U		1 U	1 U	1 U	6.7
Ethylbenzene	700	87	5 U	2 U	1 U		1 U	1 U	1 U	1 U
Methylene Chloride	3	25 U	25 U	10 U	5 U		5 U	5 U	5 U	5 U
Styrene	100	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
Toluene	1,000	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	100	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	NP	5 U	5 U	2 U	1 U		1 U	1 U	1 U	1 U
Xylenes, Total	10,000	180	10 U	4 U	2 U	2 U	2 U	2 U	2 U	2 U

QUALIFIERS

μg/L - micrograms per liter

D - Diluted Value

U - value not detected above the laboratory reporting limit.

Yellow - exceeds Type 1 Risk Reduction Standard for Groundwater.

FIGURES

ATTACHMENT A

Professional Services

ATTACHMENT A

Tabulated Summary of Professional Engineer and Geologist Time (Period June 1, 2014 through November 30, 2014) Tara Shopping Center, Jonesboro, GA

Voluntary Remediation Program (HSI 10798)

Professional Engineer	Date	Hours	Description
Kristin VanLandingham, PE	6/27/2014	1.5	Reviewed semi-annual progress report and sent seal page
	6/24/2014	0.5	Meeting with EPD to discuss access issues.
	9/19/2014	0.5	Meeting with agency to discuss environmental covenant and offsite access for well installation
Professional Geologist	Date	Hours	Description
James Breza, PG	6/25/2014	0.5	Meeting with M. Stayrook to discuss status of site investigation program
	7/16/2014	0.5	Meeting with M. Stayrook to discuss Georgia EPD draft bedrock surface map
	8/20/2014	0.5	Meeting with M. Stayrook to discuss upcoming field work (bedrock drilling and well installation)
	8/27/2014	1	Meeting with M. Stayrook to discuss drilling approaches and review of current drilling status and observations
	9/2/2014	1	Meeting with Phillip Foster to discuss scope of work, drilling performance and bedrock encountered (MW-19D)
	9/3/2014	1	Meeting with Phillip Foster to discuss scope of work, drilling performance and bedrock encountered (MW-22B)
	9/4/2014	0.5	Meeting with Phillip Foster to discuss scope of work, drilling performance
	10/6/2014	0.5	Review of proposed well locations and rationale
Professional Engineer	Date	Hours	Description
Jonathan Waddell, PE	7/301/14	0.5	Meeting with M. Stayrook to discuss Georgia EPD draft bedrock surface map
	8/12/2014	0.5	Meeting with M. Stayrook to discuss equipment needs for drilling program
	8/13/2014	1	Field planning
	8/14/2014	0.5	H&S planning
	8/15/2014	1	Review of work orders
	8/20/2014	3	Meeting with M. Stayrook and Cascade drilling, field prep and equipment ordering
	8/21/2014	8	Mob/demob, oversight of private utility mark out, site walk with M. Stayrook
	8/22/2014	2	Field visit follow-up, field notes upload, drilling oversight prep
	8/25/2014	5	Mob to site, field oversight of drilling activities
	8/26/2014	3	Field oversight of drilling activities (Installation of MW-19D, MW-21 monitoring well cluster)
	8/27/2014	8.5	Field oversight of drilling activities (Installation of MW-19D, MW-21 monitoring well cluster)
	8/28/2014	11	Field oversight of drilling activities (Installation of MW-19D, MW-21 monitoring well cluster)
	8/29/2014	10	Field oversight of drilling activities (Installation of MW-19D, MW-21 monitoring well cluster)
	8/30/2014	6.5	Field oversight of drilling activities, mob from field to office
	9/8/2014	1	Meeting with M. Stayrook to discuss action items following field work
	9/9/2014	1	Meeting with M. Stayrook to discuss access agreement, prep for field visits, invoice review
	9/15/2014	4	Mob to site, drum inventory, well inspections, meeting with Cascade Drilling, mob from site to office
	9/19/2014		Drum pickup prep, vendor invoice processing
	10/17/2014		Drum pickup coordination
	10/20/2014		Mob from office to Jonesboro, drum pickup oversight
	10/21/2014		Survey coordination
	10/29/2014		Survey oversight prep
	10/30/2014	8	Mob to Jonesboro, survey oversight and support, mob back to office

ATTACHMENT B
Monitoring Well Sampling Logs

Client/Project Ash		cimen		AMPLINGE		
	a Shappin	(Centel			Event:	
Sampling Personnel:	Sid & Jerch		ich hir	cole	Well ID: MW-3 Date: 7-22-1	A
Job Number:					Date: 7.22-1	<u> </u>
Weather: 374	CGS - 800				Time In: 1227	Time Out: 1257
WELL INFORMATION		пс -	TOC	BGS	check where appropriate Well Type:	Stick-Up
Deptii to Water	(feet)	120181	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Well Locked:	Yes No
Total Depth	(feet)	25:19			Measuring Point Marked:	Yes No 🗌
Screened Interval	(feet)					
Pump Intake ~	(feet)	2 3			Well Diameter:	1" 2" Other:
WELL WATER INFORMATION	<u>ON</u>					SAMPLING INFORMATION
Length of Water Column:	(feet)	4.38			Conversion Factors	Analyses:
Volume of Water in Well:	(gal)	, 1)		gallons per feet	'ID 2"I D 4" ID 6"ID	voc 8260
Pumping Rate of Pump:	(mL/min)	400		of water column:	041 0.163 D.653 1.469	Metais 6010
PumpStart: 2 2		1258	─ ┃.	1 gal =	5 L =3785 mL = 0.1337 cubic ft.	Inorganics Various
Minutes of Pumping:	31	1110	-		Unit Stability	7
Total Volume Removed:	0 (ml)	12400		pH ±0.2	DO Cond ORP Temp mg/L ±5.0% ±10% ±5%	
EVÁCUATION INFORMATION			m/		7	Sample ID: MW-3A
Evacuation Method:	· 🗂 /	Peristaltic	Bladder 4	Other Pump	J	Sample Time: 1255
Tubing Used:	[~]	dyethylene 🔲		<i>*</i>	7	MS/MSD: Yes No
Sampling Method:	Bailer 🔟	Peristalfic 🖵 🖊	Bladder W	Other Pump		Duplicate: Yes No Duplicate ID:
Did well go dry?	Yes 🔲	No 🖸	Water Qı	uality Meter Type:	losibu-U-53	Total Bottles:
Time	1245	21247	3251	1254	6	7 8 9
Parameter	400	400	400	400		
Rate (ml/min)	20,94	2094	20,94	20,94		
Depth to Water (ft. TOC)			18.81			
Temperature (°C)	18.95	18.80		18.80		
Ha	5.03	5.00	4.49	500	· · · · · · · · · · · · · · · · · · ·	
Conductance (mS/cm)	1050	1048	720.	1016		
Dissolved Oxygen mg/L)	15	135	129	126		
Turbidity (NTU)	113	108	109	109		
ORP (mV)	214	217	218	217		· · · · · · · · · · · · · · · · · · ·
				7		
Time .	10	11	12	Water L	Equipment Used:	ν·
Parameter		 			20 200	
Rate (ml/min)		 	<u></u>		works Alcon	
Depth to Water (ft. TIC)	<u> </u>	 		<u> </u>	weter Alcon	10° F
Temperature (°C)						
рН				Sample	ervations:	
Conductance (mS/cm)				↓		
Dissolved Oxygen mg/L)						
Turbidity (NTU)						
				1		· · · · · · · · · · · · · · · · · · ·
ORP (mV) MISCELLANEOUS OBSER	RVATIONS/PROBLEMS	<u> </u>				
					<u> </u>	
						· · · · · · · · · · · · · · · · · · ·
SAMPLE DESTINATION	TEST Ame	1166				
Laboratory:	Sycanul)	· /	Sample wa	shipped day of sampling	Chain of Custody Signed By:
Shipped Vis	Federal Eyntess	LIPS	Other	FF. 51 8	picked up on 1/24/19	1 Daniel Princule

SAMPLING LOG

Client/Project Ashland Allerman	
Site Location: Telashopping Centel	Event: Well ID: MK 5 8
Sampling Personnel: Danill Gracuit 2 Eddic	17111
Job Number:	Date: + - / 1 - 1 - 2 - 7 1
Weather: Clocky 80	Time In: 1360 Time Out: 1337
WELL INFORMATION TIC YOC	theck where appropriate BGS . Well Type: Flushmount Stick-Up
Depth to Water (feet)	Well Locked: Yes M
Total Depth (feet) 5.7 */ 8	Measuring Point Marked: Yes W
Screened Interval (feet)	
Pump Intake ~ (feet)	Well Diameter: 1" 2" 1 Other:
WELL WATER INFORMATION	SAMPLING INFORMATION
Length of Water Column: (feet)	Conversion Factors Analyses:
The state of the s	ons per feet 1" ID 2" ID 4" ID 6" ID VOC 8260
Pumping Rate of Pump: (mL/min) of wi	Tater column: 0.041 0.163 0.653 1.469 Metals 6019
PumpStart: 1300 Pump Stop: 1321	1 gal = 3.785 L = 3785 mL = 0.1337 cubio ft. Inorganics Various
Minutes of Pumping: 3 7	Unit Stability
Total Volume Removed: 0 (ml) 9500	pH DO Cond ORP Temp Other:
	±0.2 ±1 mg/L ±5.0% ±10% ±5%
EVACUATION INFORMATION	Sample ID:
Evacuation Method: Bailer Peristaltic Bladder	Other Pump Sample Time:
Tubing Used: Teflon Polyethylene	MS/MSD: Yes□ No ☑
Sampling Method: Bailer Peristaltic Bladder	Other Pump U Duplicate; Yes No W
	Duplicate ID:
Did well go dry? Yes No Water Quality	Meter Type: Horiba U-53 Total Bottles:
Time 1 2 3 4	5 6 7 8 9
Parameter	P3 - 13 - 13 - 13 - 13 - 13 - 13 - 13 -
Rate (ml/min)	328
Depth to Water (ft. TOC) 21,03 2 21,659 2 1309 6	21.09
197 77 198 10 10 10	1138
Temperature (°C)	
pH 1/12 The state of the state	
Conductance (mS/cm) 374 22 374	9 stus
Dissolved Oxygen mg/L) 4704	4,90
1 10.5 10.5 10.19	. 84
Turbidity (NTU)	213
ORP (mV)	
Time 10 11 12	Water Level Equipment Used:
Parameter	So linst 122
	Decontamination Fluids Used:
Rate (ml/min)	Pi Hzo Alconov
Depth to Water (ft. TIC)	11170 1.100.00
Temperature (°C)	
pH	Sample Observations:
Conductance (mS/cm)	
Dissolved Oxygen_mg/L)	
Turbidity (NTU)	
ORP (mV)	
MISCELLANEOUS OBSERVATIONS/PROBLEMS	
	· · · · · · · · · · · · · · · · · · ·
SAMPLE DESTINATION TEST AMERICA	
SAMPLE DESTINATION	Sample was fnipped day of sampling
Laboratory: Shipped Via: Federal Express UPS Other Co	Sample was shipped day of sampling Chain of Custody, Signed By:
Shipped Via: Federal Express UPS Other	wind picked up on 7-24-14 # M

Client/Project		nun	,		-							
Site Location:	= Stoppin	. CENTE	1 fa : _ e	2.01	-	vent:		<u> </u>				
Sampling Personnel:	dic Jerder	Y Vanic	1 Kinc	المرة ف	_	Well ID:	MY- 8	<i>y</i> v				
Job Number:					Ε	ate:	7/23/1	4		'1 8	<i>i</i> 4%	
Weather: 10	Sunny					îme In:	1545		Time Out	: 10	10	
WELL INFORMATION		TIC	TOC	BGS		heck wher Vell Type	e appropriate	ıshmount	4)	s	tick-Up	
Depth to Water	(feet)	25.21			¥	Vell Lock	ed;	Yes	ركك		No	
Total Depth	(feet)	32,91				Measurin _i	g Point Marked:	Υe	s 1		No	□ .
Screened Interval	(feet)								r	r	··· 3 - 3	
Pump Intake ~	(feet)	'S 0'			v	Vell Diam	neter:	1"	<u> </u>	2" 🗓		Other:
WELL WATER INFORMATION	ON	face samp							SAMPLIN	G INFO	RMATION	
Length of Water Column:	(feet)	1			Conven	sion Facto		٦	Analyses	:		- Appen
Volume of Water in Well:	(gal)	1,25		galions per feet	1" ID	2" D	4" ID 6" ID	-	VDC	826D		i de la constante de la consta
Pumping Rate of Pump:	(mL/min)	500		of water column:	0.041	0.163	0.653 1.469	-	Metals	€D1D		
PumpStart: 15	The Park I have been a second	1610		1 gal = 3	3.785 L =37	85 m L = 0	.1337 auble ft.		Inorganics	Various		<u> </u>
Minutes of Pumping:	25	1000	<u> </u>		Unit!	Stability		1				Щ.
Total Volume Removed:	0 (ml) ·	1250	0	pH ±0.2	± 1 mg/L	Cond ± 5,0%	ORP Temp ± 10% ± 5%		Other:			
EVACUATION INFORMATION									Sam	pfe ID:	MW	~ 7 7
Evacuation Method:	Bailer 🔲	Peristaltic	Bladder 🕍	Other Pump	Ш_				Sample	Time:	16	0
Tubing Used;	Teffon Pol	yethylene	10000		_				MS	⊮MSD:	Yes	No W
Sampling Method:	Bailer	Peristaltic	Bladder 4	Other Pump					Duş Duplic	olicate:	Yes	No □
Did well go dry?	Yes 🔲	No D	Water Qu	elity Meter Type:	Hezi	bin	<u> </u>	-	1 '	Bottles:	3	
Time Parameter	1556	2 5 4	31602	1605	5		6	7 .	8	1	9	1
Rate (ml/min)	500	5000	500	500				١.				
Depth to Water (ft. TOC)	25.23	25.21	25,21	25.21								
	26.46	26,41	26.20	2606				ļ				
Temperature (°C)	5,22	5.22	5,54	5.57								
	1099	1084	1075	1072								
Conductance (mS/cm)	1,92	1,49		1,04				 				
Dissolved Oxygen mg/L)			7		1						-	
Turbidity (NTU)	75.9	61.4	6(1)	61.7								
ORP (mV)	506	450	460	448								
Time	1D	11	12	Water Le	evel Equip	ment Use	ed:					
Parameter				9	Sol	ins-	+ 127	uto-				
Rate (ml/min)					mination F							
				10°			Alcen	. V				
Depth to Water (ft. TIC)					<i>i</i> 112	20 1	1716670	<u>.</u> /				
Temperature (°C)												
pH		ļ		Sample (Observatio	ons:						
Conductance (mS/cm)		<u> </u>										
Dissolved Oxygen mg/L)												
Turbidity (NTU)				;							_	
			·	1								
ORP (mV)	NATIONS (PROP) THE	1	<u> </u>	J								
MISCELLANEOUS OBSER	VA HUNS/PROBLEMS							-				
												
SAMPLE DESTINATION	Test Amer	- 1cm				,-,-,-						
Laboratory;	Susennel			Sample was	. 🔲 :	hipped d	ay of sampling		Chain of	Custody \$	Signed By	
Shipped Via:	Federal Express	UPS	Other	00121			on 7/24/14		Dani	101	Sinc	1510

SAM	PLIN	IG L	OG
-----	------	------	----

Client/Project ASN	IA local	Feimur)			
Site Location:	Shopping idiz sendon	CENTY	i		Event:	
Sampling Personnel:	idic deadur	Daniel	Kincai	Ć,	Well ID: NW-50	
Job Number:					Date: 7-23-14	
Weather: 900	SUMMY W	11 show	c15		Time In: 145 7	Time Out: 5 2-5
WELL INFORMATION		TIC	тос	BGS	check where appropriate Well Type: Flushr	nount Stick-Up
Depth to Water	(feet)	25.11			Well Locked:	Yes No
Total Depth	(feet)	57,32			Measuring Point Marked:	Yes No L
Screened Interval	(feet)	41			W II D	1" 2" V Other:
Pump Intake ~ WELL WATER INFORMATION	(feet)	-11			Well Diameter:	SAMPLING INFORMATION
Length of Water Column:	(feet)	32,2	1		Conversion Factors	Analyses:
Volume of Water in Well:	(gal)	512	5	gallons per feet	1" ID 2" ID 4" ID 6" ID	VOC 6260
	(mL/min)	400	-	of water column:	0.041 0.163 0.653 1.469	Metals 6010
Pumping Rate of Pump:	N ELW	1525				
	Pump Stop:	_ <u> </u>		1 gai = .	35 L <3785 mL = 0.1337 cubic ft.	Inorganics Various
Minutes of Pumping: Total Volume Removed:	0 (ml)	1080	O	pH ± 0.2	Unit Stability	Other:
EVACUATION INFORMATION	ON.					Sample ID: *\W~YO
Evacuation Method:	Baller 🔲	Peristaltic	Bladder	Other Pump	<u> </u>	
		lyethylene		i willy		Sample Time: 1450 MS/MSD: Yes No
Tubing Used:	Bailer D	Peristaltic	Bladder D	Other Pump	ך	Duplicate: Yes No
Sampling Method:	Datie: L	renstant —	niduoet (1821	Other Pump	1	Duplicate ID: AVA
Did welf go dry?	Yes 🔲	No 🛂	Water Q	uality Meter Type:	allbe 053	Total Bottles:
Time Parameter	1 1413	21416	1419	1422	6 7	9
Rate (ml/min)	400	400	400	400		
Depth to Water (ft. TOC)	25.16	25116	25,17	25.17		
Temperature (°C)	22.88	25.05	25,44	25.87		
	5.37	5.04	503	503		
рН	,127	1113	, 111	1104		
Conductance (mS/cm)			1,47			
Dissolved Oxygen mg/L)	2:5%	1,92	, ,	1:92		
Turbidity (NTU)	75.8	57.6	47.6	40.9		
ORP (mV)	378	442	503	514		
Time	10	11	12	Water Le	l Equipment Used:	
Parameter					551 tenile	
Rate (ml/min)			l	Deconta	nation Fluids Used:	
						· • ×
Depth to Water (ft. TIC)		1		1 -	611	-
Temperature (°C)	 	 		1 —		
pH	-	 		Sample	servations:	
Conductance (mS/cm)		+				
Dissolved Oxygen mg/L)		ļ		-		
Turbidity (NTU)		-				
ORP (mV)	<u> </u>				1.	
MISCELLANEOUS OBSER	VATIONS/PROBLEMS					,
	4//4					
					,	
	. A					
SAMPLE DESTINATION	lest Ame	, , ,				
Laboratory:	SEAR MAL			Sample was	shipped day of sampling	Chain of Custody Signed By:
Shipped Via;	Federal Express	UPS	Other &	councel	Picked up on 7/2 4/1 U	1440) CI (NO (410)

ampling Personnel: 🐔	. Ghyppin Jir. School	, Danie	Kincu	10	Well ID:	Mw-K	<u> </u>		
ob Number:		•			Date:	7-23-16	<u>/</u>		
kather: Υ					Time In:	1720	Time (out: 1735	
ELL INFORMATION					check wher	e appropriate			
		TIC	TOC	BGS	Well Type		ushmount 🗓	Stick-L	Jp 🔲
epth to Water	(feet)	29,94			Well Lock	ed:	Yes 🛂	· _ ^	٠ 🔲
otal Depth	(feet)	86.34			Measurin	g Point Marked:	Yes 🚣		١٥
creened interval	(feet)						_	_	
ump Intake ~	(feet)	5 7			Well Diam	reter:	1"	2" []	Other:
ELL WATER INFORMATION							SAMP	LING INFORMAT	TION
ength of Water Column:	(feet)	56.4			Conversion Facto	rs	Analy		
olume of Water in Well:	(gal)	9,14		gallons per feet	1" ID 2" ID	4" ID 6" ID	voc	8280	□ 21
umping Rate of Pump:	(mL/min)	700			0.041 0.163	0.653 1.469	Metals	6010	
umpStart: 12-0	Pump Stop:	1735		1 gal = 3,7	'85 L =3785 mL = D	,1337 cubic ft.	tnorgani	s Various	
linutes of Pumping: 🚶 🖔					Unit Stability		_		
otal Volume Removed:	0 (ml)	1050	8	₽H	DO Cond	ORP Temp	Other	;	_ 🗆
				±0.2 ±	1 mg/L ± 5.0%	±10% ±5%			□
VACUATION INFORMATION	L. commercia		_ ^				s	ample ID: 👭	w-gc
vacuation Method:	Bailer 🔲 🦯	Peristattic	Bladder 🔽	Other Pump			Sam		35
ubling Used:	Teflon Pol	yethylene		٠,	_				es 🖺 No 🕒
ampling Method:	Bailer	Peristaltic	Bladder 1	Other Pump	┙			Duplicate: Ye	es 🔲 No 🖫
			•		a · L	(1 6 7	Du	plicate ID:	
id well go dry?	Yes	No 🔽	Water Qu	rality Meter Type:	10/100	, ひ~ブラ	Tot	al Bottles:	
me 1	1723	2 1726	3	1732		6	7	8	9
arameter	·	1	f 8 tm (······		
ate (ml/min)	<u>700</u>	700	700	700				_	
epth to Water (ft, TOC)	29.80	71.21	29.93	29.44					
emperature (°C)	24.37	2208	2277	22174					
н	1 0 .60	16.29	11.36	11:45					
onductance (mS/cm)	38-U	.56 3	1572	1583					
	1,45	44	60	. 61					
issolved Oxygen mg/L.)	36.3	22.8	24.4	205					
urbidity (NTU)		 	-30				 	 	1
PRP (mV)	56	~25	-30	-36 1					1
ime 10		11	12	Water Lev	el Equipment Use	ed:			
'arameter				l S	olinst	122			
ate (ml/min)		·		Decontam	ination Fluids Us	ed:			
				91		Alcono	×		
epth to Water (ft. TIC)					1.70	THICATIO	·		
emperature (°C)				 					
H				Sample O	servations:				
onductance (mS/cm)									
issolved Oxygen mg/L)				·		·······			•
urbidity (NTU)									
RP (mV)									
MISCELLANEOUS OBSERVAT	IONS/PROPI EMS		1	·					
IOCEELANEOUS CESERVAT	IONON NOBELINO								

								· · · · · · · · · · · · · · · · · · ·	
	ST Americ			-1					

Client/Project 45h	and Altel	m un			
Site Location: Sampling Personnel:	- Shepping	center		. 6	Event:
Sampling Personnel:	ddie Sorde	, Danie	Well ID: MW-9A		
Job Number:			Date: 7-23- i Y		
Weather: 40					Time In: 1412 Time Out: 1475
WELL INFORMATION					check where appropriate
		TIC	TOC	BGS	Well Type: Flushmount Stick-Up
Depth to Water	(feet)	2018			Well Locked: Yes No
Total Depth	(feet)	30,41		-	Measuring Point Marked: Yes Yes Mo
Screened Interval	(feet)	3 65			Well Diameter: 1" 2" W Other:
Pump Intake ~	(feet)	6-7			Well Diameter: 1" 2" 4 Other:
WELL WATER INFORMATION	•	9,54			SAMPLING INFORMATION
Length of Water Column:	(feet)	2018	7	·	1" D 2" D 4" D 5" D Voc 8250
Volume of Water in Well:	(gal)	450	•	gations per feet	The state of the s
Pumping Rate of Pump: PumpStart: U	(mL/min) 2 Pump Stop:	1435		of water column:	0.041 0.163 0.653 1.469 Metals 6010
PumpStart: U	7.7	100		I gai = -	Unit Stability
Total Volume Removed:	0 (ml)	1035	Ď	рĦ	DO Cond ORP Temp Other:
TOTAL TOTAL TOTAL TOTAL	- (± 0.2	±1 mg/L ±5.0% ±10% ±5%
EVACUATION INFORMATIO	ON				Sample ID: MW-3/A
Evacuation Method:		Peristaltic .	Bladder 🔟	Other Pump	
Tubing Used:	Teflon Po	yethylene			Sample Time: 1435 MS/MSD: Yes No P
Sampling Method:	Bailer	Perîstaltic	Bladder 1	Other Pump	p Duplicate; Yes No Duplicate
	r>	_ /	,		Duplicate ID:
Did well go dry?	Yes 🔟	No II	Water Q	uality Meter Type:	Hudiba 0-53 Total Bottles: 3
Time	1420	1423	3 1426	4 , 4 , 5	5 8 9
Parameter		 		1129	
Rate (ml/min)	450	450	450	450	
Depth to Water (ft. TOC)	20.96	20.96	20,96	20.96	
Temperature (°C)	20,52	20135	2002	20.29)
pН	6.37	5,51	5.43	5:30	
Conductance (mS/cm)	1101	.068	1057	,052	
	05	.08	08	109	
Dissolved Oxygen mg/L)	lot	89.2	80.5	77	
Turbidity (NTU)	41	18	44	104	
ORP (mV)		<u> </u>	1	1 • • • • • • • • • • • • • • • • • • •	
Time	10	11	12	Water Le	evel Equipment Used:
Parameter				<u> </u>	Solinsti22
Rate (ml/min)					tamination Fluids Used:
Depth to Water (ft, TIC)					Oi, Ho, Alcono y
Temperature (°C)					
рН				Sample	e Observations:
Conductance (mS/cm)					
Dissolved Oxygen mg/L)				1	
				1	
Turbidity (NTU)				1	· -
ORP (mV)	<u> </u>	L		J	
MISCELLANEOUS OBSER	VATIONS/PROBLEMS				
				· · · · · · · · · · · · · · · · · · ·	
		·			
<u></u>					
•					
SAMPLE DESTINATION	Test Amel	C L			
Laboratory:	Screenuh		/	Sample was	as Shipped day of sampling Chain of Custody Signed By: Dentil Nines
Shipped Via:	Federal Express	UPS	Other &	ouried	Dank I hiresor

ampling Personnel: 1)c4/1	izl Kainc	~ <u>≈11 €21 €</u>	de Je		Well I	D. I VANA	- 43			
ob Number:	_				Date:	7-2	3 T			
Veather: 406				· 	Time	In: 14	50	Time	Out: 1517	<u>L</u>
VELL INFORMATION					-11	where appropriate				
VELL INFORMATION		TIC ·	тос	BGS	Well			hmount 🛂	Stick-U	Jo 🔲
Pepth to Water	(feet)	21.56	100			ocked;	1 100	Yes 2	1 //	, <u> </u>
otal Depth	(feet)	164101				uring Point Mar	ked:	Yes	V	, <u> </u>
Screened Interval	(feet)								•	_
oump Intake ~	(feet)	42			Weli I	Diameter:		1"	2"	Other:
•										
WELL WATER INFORMATION	** "	42,45	*						LING INFORMAT	<u>ION</u>
ength of Water Column:	(feet)	6.42			Conversion F			Analy		v
/oiume of Water in Well:	(gal)	400		gallons per feat	1" ID 2" I		6" ID	VOC	8260	
Pumping Rate of Pump: PumpStart: 145	(mL/min)	1512		of water column:	0.041 0.16		1.469	Metals	6010	
JumpStart: 3				1 gai = 3		L ≈ 0.1337 cubic f	<u> </u>	inorgan	ics Various	
otal Volume Removed:	0 (ml)	440	ð	Hq	Unit Stabilit		Temp	Other	r [,]	
otas volume Removed.	C (IIII)				1 mg/L ± 5.0		± 5%	Oliso		- 1
EVACUATION INFORMATION				_ ± 0.2	- mgraj i vij	2 2 1070	1 20%	- s	iample ID:	
Evacuation Method:	Baller 🔲	Peristaltic	Bladder A	Other Pump						W 10
ubing Used;		lyethylene	Diader Co.	outer 1 dinp			-			es No 🖫
Sampling Method:	Teflon Po	Peristaltic	Bladder	Other Pump					Duplicate; Ye	es No D
amping memod.	Bailer -						-		plicate ID:	
Did well go dry?	Yes	No 🗹	Water Q	uality Meter Type:	Herib	ne Ur	<u> </u>		tal Bottles: 3	
Time 1	1458	21501	31501	1507	5	6		7	8	9
	400		400	400					+	+
Rate (ml/min)	4	SOF								1
	<u>-</u>	21.0	2180	21.80						
	0.69	2017	1 4.16	14.89						
н (5.70	6136	6,43	6.52						
Conductance (mS/cm)	. 095	15)	1154	156						
Dissolved Oxygen_mg/L)	. 47	4,94	4.83	4.77						
Furbidity (NTU)	26.4	17.8	15.3	15.5		ĺ				
	82	نما	36	39						
ORP (mV)		<u> </u>	1 99	1 9/1 · ·						
Time 10		11	12	Water Lev	rel Equipment	, <u>ş</u>	R			
Parameter					2011	NSI].5	, T		
Rate (ml/min)				Decontar	nination Fluid	s Used;				
Depth to Water (ft. TIC)					011	ემ	11 Corp	204		
Temperature (°C)						- 1				
ьн		1		Sample C	bservations:	•				
	***************************************			<u>Sample c</u>	pacivadoliai					
Conductance (mS/cm)		·								
Dissolved Oxygen mg/L)			 	1						
Turbidity (NTU)				l						
ORP (mV)			<u> </u>							
MISCELLANEOUS OBSERVAT	IONS/PROBLEMS		·							
							······································			
										······································
SAMPLE DESTINATION	:st Amer	En								

Client/Project AshlwCl Alte/Mis	<u>~ ^1</u>	
Site Location: TEIL DIVEL Shop	ping Cente	Event:
Sampling Personnel:	<u> </u>	Well ID: MW-GC
Joh Number		Date: "7/23/14
Weather Cloydy Scattered 5	phower's	Time In: 32° Time Out: 400
<u> </u>		check where appropriate
WELL INFORMATION	TIC TOC BGS	Well Type: Fiushmount Stick-Up
Depth to Water (feet)	20:43	Well Locked: Yes No No
Total Depth (feet)	24.54	Measuring Point Marked; Yes No
Screened Interval \$5-100 (feet)		•
Pump Intake ~ (feet)	56:26	Well Diameter: 1" 2" Other:
		SAMPLING INFORMATION
WELL WATER INFORMATION	0:16	Conversion Factors Analyses:
		1" ID 2" ID 4" ID 6" ID Voc 8280
Volume of Water in Well: (gal)	gallons per feet of water column:	0.041 0.163 0.653 1.469 Metals 6010
Pumping Rate of Pump: (ml./min)		7.85 L = 3765 mL = 0.1337 cubic ft. Inorganics Various
PumpStart: (5.5.) Pump Stop: (5.5.)	1 gal = 3	
1.0	5 40 6 pH	Unit Stability DO Cond ORP Temp Other:
Total Volume Removed: 0 (ml)		
	<u> </u>	±1 mg/l ±5.0% ±10% ±5% Sample ID;
EVACUATION INFORMATION	ic Bladder Other Pump	Sample Time: 13.5 f
Evacuation Method: Bailer Peristalti		MS/MSD: Yes No W
Tubing Used: Teflon Polyethylen		Duplicate: Yes No L
Sampling Method: Bailer Peristalti		
Did well go dry?	No Water Quality Meter Type:	Hotibe - U53 Duplicate ID:
Time 1	3 4 .	5 6 7 8 9
1 11440 1136	43 11346 11344 1	
धदल धद	0 450 450	
Rate (ml/min)	35 0135 3135	
Depth to Water (ft. TOC)	1 2 2 1 2 1 2 1 C	
Temperature (°C) Z5r3 4 Z5	5.56 25.52 25.44	
PH 8.41 8	1,42 5,91 8, 89	
11 7 16	42 142 191	
Conductance (mosting	53 , 53 , 63	
Dissolved Oxygen Ing/L) - L F		
Turbidity (NTU) 2913 2	1 1 1 1 1 1 1 1	
ORP (mV)	181 -189 -194	
Time 10 11	12 Water Le	vel Equipment Used:
Parameter		olinst 122
		mination <u>F(uids Used:</u>
Rate (ml/mln)		
Depth to Water (ft. TIC)		1120, Alconox
Temperature (°C)		
рН	Sample	Observations:
Conductance (mS/cm)		
Dissolved Oxygen mg/L)		
Turbidity (NTU)		
ORP (mV)		
MISCELLANEOUS OBSERVATIONS/PROBLEMS		
SAMPLE DESTINATION TEST AMERICA		
Laboratory: Savennah	Sample was	shipped day of sampling Chaln of Custody Signed By:
Shipped Via: Federal Express	UPS VotheCovist	picked up on 7/24/14 Daniel Kance, cl

Client/Project ASA Site Location:	Lend Alto	inan 2 Cant	CV			Event:							
Sampling Personnel: Ž	XV PP	5				Well ID:	Μw	-iO	A				
lob Number:						Date:	7 - 2 3)~ U	•				
Neather: 90°	Sunny					Time In:	110	8		Time Out;	113	5	
•	,	•											—
MELL INFORMATION		TIC	тос	BGS		oheck where a Well Type:	ppropriate	Flue	shmount	-	Stick-U	h 🗍	
epth to Water	(feet)	25.94	,,,,,	JASO T		Well Locked	1-	1 144	Yes		N N		
	(feet)	3 5.35				Measuring F		al.	Ye		N		
otal Depth		., ., .,				weasuring r	OHR Warke	ıu.	, .	. 17 m	IN.	• 🗕	
creened Interval	(feet)	32.13							411		2" [100	Other:	
ump Intake ~	(feet)) & i \ J				Well Diamete	er:		1"		2" <u>Lat</u>	Other:	
WELL WATER INFORMATI	ON	1 A 16	**							SAMPLING	INFORMAT	ION	
ength of Water Column:	(feet)	12.45				ersion Factors			i	Analyses:		Ň	کتے۔
folume of Water in Well:	(gal)		·	gallons per feet	1" ID	2" 10	4° ID	6" ID		VOC 82		127	i.
umping Rate of Pump:	(mL/min)	500		of water column:	0.041	0.163	0.653	1.469		Metals 60	10		!
ompStart:	O S Pump Stop:	1135		1 gal = 3	3.785 L =	9785 mL = 0.13	37 cubic ft.			Inorganics Vari	ous	Ц	į
linutes of Pumping:	27	1356			Un	it Stability			1				1
otal Volume Removed:	0 (ml)	1 1376	O	Hq	DO	Cond	ORP	Temp		Other:		_ 💾	1
				± 0.2	± 1 mg/l	± 5,0%	±10%	± 5%					1
VACUATION INFORMATION	<u></u>	\$11 mins	_		_					Sample	ID: 🌇	W-10/	¥
vacuation Method:	Bailer	Peristaltic	Bladder 🕍	Other Pump	\sqcup					Sample Tir	ne: 🗎 È	08	,
Tubing Used:	Teflon Po	lyethylene 🔲		·						MS/M		s No 🛂	1
ampling Method:	Bailer 🔲	Peristaltic	Bladder J	Other Pump						Duplica		s 🗖 No 🕡	
The state of the s						`		_		Duplicate			•
ild well go dry?	Yes 🔲	No L	Water Qu	uality Meter Type:	Ho.	, b	-U ST	3		Total Bott		3	
ime	1 2366	2	3	4 3 1 75 5	5	6			7	8		9	
arameter	1114	1122	1125	1128									
ate (ml/min)	500	500	500	500									
	25,55	25.95	25.95	- 596									
Depth to Water (ft. TOC)		25.18	25.00	75,96		-						1	_
emperature (°C)	25.45												_
Н	5,45	5.38	5137	5.76									
Conductance (mS/cm)	,077	180,	.077	, 013									
	3,36	3.21	3.01	2,97									
Dissolved Oxygen mg/L)	35,8	28.9	28.1	280								1	_
Furbidity (NT⊔)	3 2, 3			72)									
RP (mV)	210	216	Ziq	L6).	l				L				_
lime	10	11	12	Water Le	vel Equ	pment Used:							
Parameter			1			_{ipment Used:} Suไเก	4	22	104				
				1							-		
Rate (ml/min)		ļ		<u>Decontar</u>		Fluids Used		Αì					_
Depth to Water (ft, TJC)		1		ļ ·	4); II	20 }	HU	<u>(() 1</u>	104			_
emperature ("C)													
Н				Sample 0	Observa	tions:	-						
		1		1 Sange									
Conductance (mS/cm)		1		1									_
Dissolved Oxygen mg/L)			_	 									
[urbidity (NTU)				l									
DRP (mV)		<u> </u>											
SCELLANEOUS OBSER	RVATIONS/PROBLEMS		·										_
													_
				- · · · · · · · · · · · · · · · · · · ·									_
•													
		-											
												ē	
	Test Amel	1 6. 20.											—
SAMPLE DESTINATION	IST HIME!	in .											
aboratory:	Savenne	·•		Sample was	닠	shipped day		~		Chain of Cus	tody Signe	d By:	í
ipped Vla:	Federal Express	UPS	Other C	12/160	. 🔲	picked up or	1/2	1/14		Janie	i Ni	ncin (,

SAMPL	11 [1 00

Client/Project 150 cvo	Herman		******	
Site Location: Tora Shop	ping center			Event:
Sampling Personnel: £22	, ,			Well TO: MW-10 D
Job Number:				Date: 7/23// 4
Weather: Gland V	***************************************			Time In: Time Out
WELL INFORMATION			<u>.</u>	check where appropriate
	TIG	тос	BGS	Well Type: Flushmount Stick-Up
Depth to Water ((feet) 25,74		,	Well Locked: Yes Mo
Total Depth ((feet) 42,19	-3		Measuring Point Marked: Yes No
Screened Interval	(feat)			
	(feet) 33:9	·		. Well Diameter: 1" 2" - Other
WELL WATER INFORMATION				SAMPLING INFORMATION
	(feet)	29/		Conversion Factors Analyses:
	(gal) 2 1 t mL/min) 40	0	gallons perfeet	1" ID 2" ID 4" ID 6" ID VOC 8260
		<u> </u>	of water column:	0.163 0.653 1.469 Metats 5010
	uma Stop: 1613	l	1 gal = 3	3.7db = 3785 ml = 0.1337 cubic ff. Inorganges Various
Minutes of Pumping:	160			Unit Statility
Total Volume Removed; 0	(m) 600		рH	DO Cred ORP Temp Other.
			±0.2	± 1 mg/L ± 5.0% ± 10% ± 5%
EVACUATION INFORMATION	.	Bladder		Sample ID: M W-105
Evacuation Method: Bailer	Peristalific	Bladder L	Other Pump	
Tubing Used: Tellon L	Polyethylene	13/00		MS/MSD: Yes No 12
Sampling Method: Bailer	Peristaltic	Bladder 🛂	Other Pump	Duplicate: Yes No 🗹
Did well go dry? Yes	No □	. Water Qu	rality Meter Type;	Hoviba U-53 Duplicate (D: Total Bottles: 3
Time 1 202	1205	31208	1211	5 6 7 8 9
rganion		4-1		
Rate (mi/min) 400		400	400	
Depth to Water (ft. TOC) 26.0	9 2609	26.09	26.09	
Temperature (°C)	37 2917	79.16	2910	
7.0	7,25	7, 45	7,62	
	, , ,	1030		
Conductance (mS/cm)	6 (1)	210	1215	
	7 3:15	3.0%	201	
Turbidity (NTU)	<u> </u>	25.3	26.2	
ORP (mV) . 30	34	32	32	·
Time 10	11	12	Inference Lo	evel Equipment Used:
]·	[''	12	Water Le	Scling 122
Parameter				
Rate (mi/min)			<u>Deconta</u>	mination Fluids Used:
Depth to Water (ft. T)C)				D. Alcono
Temperature (°C)				
pΗ			Sample C	Observations:
Conductance (mS/cm)				
			1	
Dissolved Oxygen mg/L)				
Turbidity (NTU)				
ORP (mV)				
MISCELLANEOUS OBSERVATIONS/PRO	BLEMS		**	
<u> </u>				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
- · · · ·	MAY IS CU			
SAMPLE DESTINATION 1234 A	melica			□
	nach		Sample was	
Shipped Via: Federal Expre	ess UPS	Other.	UNICK.	D picked up on 7/24/14 Panizl Kincaid

Client/Project	and Alter	man		ANIFEING EC				
Site Location:	shopping C	enter_			Event:			
Sampling Personnel: 2	ddiz Suc	Lar, Dan	nel time	in it	Well ID:	10-10	<u>Ļ</u>	
Job Number:					Date:	7-23-1	~	<u>`</u>
Weather: CO	2				Time In:	1235	Time Out: 13	00
WELL INFORMATION		TIC ·	TOC	BGS	check whe	re appropriate	shmount S ti	ck-Up
Depth to Water	(feet)	35.65			Well Lock		Yes 🔽	No □
Total Depth	(feet)	80,114			Measurin	g Point Marked:	Yes 🔽	No L
Screened Interval	(feet)							<i>i</i> .
Pump Intake ~	(feet)	63			Well Dian	neter:	1" 2"	Other:
WELL WATER INFORMATIO		F-5					SAMPLING INFOR	MATION
Length of Water Column:	(feet)	8,72			Conversion Facto		Analyses:	
Volume of Water in Well:	(gal)	8,72		gallons per feet	1" ID 2" ID	4" ID 6" ID	VOC 8269	. 🗀
Pumping Rate of Pump:	(mL/min)	450		of water column:	0.041 0.163	0.653 1.469	Metals 601D	
PumpStart: 25	Pump Stop:	1300_		1 gal = 3	.785 L =3785 mL = 0	0.1337 ouble ft.	Inorganies Various	
Minutes of Pumping: Total Volume Removed:	0 (ml)	1125		pH ±0.2	DO Cond ±1 mg/L ±5.0%	ORP Temp ±10% ±5%	Other:	_ 0
EVÁCUATION INFORMATIO	N			102	±1111g/4 ±3.074	1 10/0 1 10/0	Sample ID:	1W-10C
Evacuation Method:	r	Peristaltic	Bladder	other Pump			Sample Time:	
		yethylene		r warp			MS/MSD:	Yes No V
Tubing Used: Sampling Method:	[]	Peristaltic	Bladder 🔟	Other Pump			Duplicate:	Yes No No
Saffping Meason.			_		1 '1	11 C Z	Duplicate ID;	
Did well go dry?	Yes	No U	Water Qu	ality Meter Type:		1	Total Bottles:	
Tîme Parameter	1245	1248	1251	1250	5	6	7 8	9
Rate (ml/min)	450	450	450	450				
Depth to Water (ft. TOC)	35.72	35.74	35,74	3577				
	29.66	30.04	24.46	2932				
Temperature (°C) pH	7.65	8.57	7.52	8.78				
Conductance (mS/cm)	:193	1143	,205	1207				
Dissolved Oxygen mg/L)	2,75	2.12	1145	2.12				
Turbidity (NTU)	55	4011	362	31.4				
ORP (mV)	47	28.3	26.9	26.2				
ORP (MV)		· · · · · · · · · · · · · · · · · · ·	1	7	L		'	
Time	10	11 .	12	Water Le	Sal in s	3 A sec		
Parameter						• • • • • • • • • • • • • • • • • • • •		
Rate (ml/min)				Deconta	mination Fluids U	A #	net.	
Depth to Water (ft. TIC)					D: Hz	FILEPTI	ia/	
Temperature (°C)		 	 	1				
рН				Sample	Observations:			
Conductance (mS/cm)								
Dissolved Oxygen mg/L)		ļ						
Turbidity (NTU)			ļ	┨ —				
ORP (mV)				<u> </u>				
MISCELLANEOUS OBSER	VATIONS/PROBLEMS							
	· · ·							
		· · · · · · · · · · · · · · · · · · ·				•		
				<u> </u>				
		137 G	i.					
SAMPLE DESTINATION	Test Ame	,		On the second		day of animalian	Ohala af Ount - de l	Signad By:
Laboratory:		UPS	Other	Sample was		day of sampling up on 7/24/15	Shain of Custody S	Kincalle'
Shipped Via:	Federal Express	UPS			- PINCE L	~ ~ * *** *** * * * * * * * * * * * * *		-

ient/Project A	MAA				Event:		•					
te Location: L/C 5	nopping (557 17	31200	Well ID:	MIAZ	~ 11 /	<u> </u>				
	101 11/10	r		21.50.(Date:	7-22	-14	·				
eather:	/ शें					7 6 7	ا وحد		me Out	. i 1	546	72L
eather: (100 a					Time In:			- "	me Out			
ELL INFORMATION				non	check whe	re appropriate	£1	hmount	W/	/	tick-Up	П
		23.65	TOC	BGS	Well Lock		rius	Yes	团.	/ "	No	$\overline{\Box}$
epth to Water	(feet)	24-15				g Point Marke		Yes	ਜੋ∕		No	ī
otal Depth	(feet)	A-1 ":"		-	Measum	y Forn mark	iu.		· Latin		/	_
creened Interval	(feet)				Well Dian	notor:		1"	٦ .	2"	Ψ,	Other:
ump Intake ~	(feet)	<u>L</u>	I	<u> </u>	yven Dian	, incress.			A MIDI IN	IG INFOR		
ELL WATER INFORMATION		1.)		,	·				nalyses		MIKITOR	
ength of Water Column:	(feet)	- 40			Conversion Facto	4" ID	6" ID		oc .	8260		
olume of Water in Well:	(gal)	- 6 /		i .	ID 2" ID	1			etals	6010		- T
umping Rate of Pump:	(mL/min)			of water column: 0.0	0,163 L=3785 mL = 0	0.653 1	1.469	- [Various		Ī
umpStart:	Pump Stop:			1 gai = 3,785		sar cupic IL		1304	er Barticz	- an ival		
inutes of Pumping:	0 (m)	 		pH D	Unit Stability Cond	ORP	Temp	6	ther:			ī
otal Volume Removed:	0 (ml)	L			mg/L ± 5.0%	± 10%	± 5%		_			
VACUATION INFORMATION	_	_		. –	3				Sam	ple ID: 🥻	٧w.	- ii A
vacuation Method:	Bailer 🔲 🔎	Peristaltic	Bladder	Other Pump	J				Sample	Time:	15	15_/
ubing Used:	Feflon Pol	lyethylene		_	3				MS	S/MSD:	Yes _	ע ו∟ או ו
ampling Method:	Bailer 🗹	Peristaltic	Bladder 🔲	Other Pump				1		plicate; rate ID;	Yes -] No
id well go dry?	Yes	No 🕡	Water C	uality Meter Type:	-			. • L		Bottles:		<u> </u>
me 1		2	3	4 5		6		7	Į.	8)
arameter		<u> </u>							\dashv		\rightarrow	
ate (ml/min)	-			ļ								
epth to Water (ft, TOC)												
		T	1									
emperature (°C)	· · · · · · · · · · · · · · · · · · ·	·	†									
н		-	-	 								
onductance (mS/cm)			ļ	-								
issolved Oxygen mg/L)												
urbidity (NTU)												
ORP (mV)											. [
rice (mv)		<u> </u>	1									
ime 10		11	12		Equipment Us	ed:						
arameter				50	Inst	•	20	, 				
Rate (ml/min)				Decontamin	ation Fluids U	sed;						
Depth to Water (ft. TIC)												
		 										•
emperature (°C)		1	 						-			
iH		 	1	Sample Obs	- /	1.1	10	į.	0	:/4 6	ts.	A 15
Conductance (mS/cm)			-	1 -	(0)	<u> </u>	110		-1-		<u>*</u>	+0
Nasolved Oxygen mg/L)		<u> </u>		_ Sno	254	0 f	EX.	الراء	44(1	(0)	ر مسر ب
Turbidity (NTU)												
ľ				* _	0.50	2/2	W	ica fi				
ORP (mV)	Melbada, cyc		1	<u></u>		1 300						
NIOCELLAINEOUS OBSERVATIO	NOTEKOBLEMS			* / /	7 / OL	γ :		(7	CAL,	120	
		Dailer							- 5.7.			
Sampled	with											
Sampled	with											
Sampled	with											

Client/Project A	umon As	المماط	65.2411		– Event:
	20	s acppins	E-C-9-11 63		
	220		·		the state of the s
Job Number:					Date:
Weather: C1000、	1				Time In: 1148 Time Out: 12.13
WELL INFORMATION	***				check where appropriate
		TIC	тос	BGS	Well Type: Flushmount Stick-Up
Depth to Water	(feet)	25,74	10 S 10 S		Well Locked: Yes No
Total Depth	(feet)	44.35	<u> </u>		Measuring Point Marked: Yes 🗹 No 🔲
Screened Interval	(feet)				
Pump Intake ~	(feet)	35.04		L	Well Diameter: 1" 2" La Other:
WELL WATER INFORMATION	ON	i e eter k	* 1		SAMPLING INFORMATION
Length of Water Column:	(feet)	18.6	<i>I</i>		Conversion Factors Analyses:
Volume of Water in Well:	(gal)	3.03		gallons per feet	1" D 2" D 4" D 6" D voc 8260
Pumping Rate of Pump:	1148 (mL/min)	400		of water column:	0.041 0.163 0.653 1,469 Metals 6010
PumpStart:	149 Pump Stop:	1213		1 gal = -	3.785 L = 3785 mL = 0.1337 cubic ft. Inorganics Various
Minutes of Pumping:	25				Unit Stability
Total Volume Removed:	0 (ml)	10 00	0	рН ± 0.2	DO Cond ORP Temp Other:
EMACUATION SECONS	DNI			1 2 4.2	Sample ID: MW 2110
EVACUATION INFORMATIO		Bartallia 🗍	Bladder	Other Pump	The Pro
Evacuation Method:		Peristaltic	rsiadost i	Omer Pump	
Tubing Used:		yethylene 🕍			[]
Sampling Method:	Bailer	Peristaltic	Bladder 🔲	Other Pump	Dublicate ID:
Did well go dry?	Yes .	No 12	Water Qu	uality Meter Type:	Hallbur - US3 Total Bottles: 3
Time	1 8 8 60 55	2	31255	4	5 6 7 8 9
Parameter	1198	1202		1263	
Rate (ml/min)	400	400	400	400	
Depth to Water (ft. TOC)	26.09	2600	26.04	2609	
Temperature (°C)	26.66	26.15	25.86	2575	
	6:23	6.47	6.61	6.66	
pH	0,104	.120	1127		
Conductance (mS/cm)	7 47		T	1 128	
Dissolved Oxygen mg/L)	20135	3,77	3.82	3,82	
Turbidity (NTU)	2 5.5	27.	2312	2.2.4	
ORP (mV)	182	151	1 44	141	
		1	1	1	
Time	10	111	12	Water Le	evel Equipment Used:
Parameter		ļ			Solmst 122
Rate (ml/min)					amination Fluids Used:
Depth to Water (ft. TIC)				1	1, A1600V
				┧ ~~ *	
Temperature (°C)					
рH			1	Sample	Observations:
Conductance (mS/cm)				ļ	
Dissolved Oxygen mg/L)	-		l		
Turbidity (NTU)			1		
t turb(ally (INTU)	-	<u> </u>	·		
ORP (mV)			<u> </u>	J	
MISCELLANEOUS OBSER	VATIONS/PROBLEMS				
	·				
				,	
	Case e				
SAMPLE DESTINATION	TEST AME!	t an			·
Laboratory:	Shvenneh			Sample wa	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Shipped Via:	Federal Express	UPS UPS	Other (العائن	picked up on 7/24/14 Daniel Kinca, of

Client/Project	IMUN					
Site Location: 17	E040	CENTER	,		Event:	
Sampling Personnel:	222				Well ID: NW-II.	<u> </u>
Job Number:	20403	53802	L		Date: 7/22 1 1 4	
Weather:		,			Time In:	Time Out: 1510
	-					
WELL INFORMATION					check where appropriate	
		TIC ·	TOC	BGS	Well Type: Flus	hmount Stick-Up
Depth to Water	(feet)	29.41			Well Locked:	Yes No 📙
Total Depth	(feet)	88.91			Measuring Point Marked:	Yes No L
Screened Interval	(feet)	\$ D				
Fump Intake ~	(feet)	57,16			Well Diameter:	1" L 2" Other:
WELL WATER INFORMATI	ION					SAMPLING INFORMATION
Length of Water Column:	(feet)	65.5			Conversion Factors	Analyses:
		10.68		gallons per feet	1" ID 2" ID 4" ID 6" ID	voc 8260
Volume of Water in Well:	(gal) (mL/min)	400		of water column;	0.041 0.163 0.653 1.469	Metals 6010
Pumping Rate of Pump:		1510		i	3.795 L =3785 mL = 0.1337 oubic ft.	Inorganics Various
	2.5	1000		rgar-v	Unit Stability	
Minutes of Pumping:	0 (ml)	10,000		pH	DO Cond ORP Temp	Other:
Total Volume Removed:	t (m)	1 9,000	<u>-</u>	± 0.2		
EMANUATION OFFICE	ON			[I U.2	±1 mg/L ±5.0% ±10% ±5%	Sample ID: NW-11 C
EVACUATION INFORMATI		Peristaltic	Bladder	Other Pump		Sample Time: 15°55
Evacuation Method:	A 1000		Bladder 🚅	Other Pump		MS/MSD: Yes No
Tubing Used:		yethylene				Duplicate: Yes No
Sampling Method:	Baller 📖	Peristaltic 🔲 🧪	Bladder	Other Pump	<u> </u>	'
Did well go dry?	Yes 🔲	No J	Water Qu	uatity Meter Type:	Horiba U-53	Duplicate ID: Total Bottles:
Did well go day!	163		,,,,,,	1	1 401	
Time	1444	1455	31458	1501	5 6	7 8 9
Parameter		1177				
Rate (ml/min)	400	400	400	400		·
Depth to Water (ft. YOC)	24.75	24185	24.95	24,98	<u> </u>	
	22.47	22.12	21.83	21.62		
Temperature (°C)	5.14	5,30	5.46	5.47		
pH	.237	1	,222	2221		
Conductance (mS/cm)		1226		0241		ļ
Dissolved Oxygen mg/L)	.80	86	1.06	19		
Turbidity (NTU)	34	1.15	14.2	17.7		
ORP (mV)	206	164	489	1 7.3		
(OKI- (IIIV)		1	• • • • · · · · · · · · · · · · · · ·	7		
Time	10	11	12		vel Equipment Used:	
Parameter					10 inst 122	
Rate (ml/min)				Deconta	mination Fluids Used:	
Depth to Water (ft. TIC)		i			DI No Alco	กอง
				1		
Temperature (°C)						
pH	, .	+		Sample	Observations:	
Conductance (mS/cm)			ļ			
Dissolved Oxygen mg/L)						
Turbidity (NTU)			l			
ORP (mV)						
MISCELLANEOUS OBSE	RVATIONS/PROBLEMS					
-						
					1.20.	
SAMPLE DESTINATION	Test Amer	<i>د</i> د.				
Laboratory:	Savanna	-		Sample wa	shipped day of sampling	Chain of Custody Signed By:
Shipped Via:	Federal Express	UPS	The other	Sample wa _Oリバム	picked up on 7/24/14	Daniel Kincaid

SITE	Ashland	Atlanta			SITE	E ATION:	Alterman/ Te	ra Shopping Ce	enter		
NAME: WELL NOW	wid -	Λιαπα		SAMPLE	EID: Mu)-14A		I .	DATE:	19-14	
	<u> </u>										
						NG DAT			PURGE PUMP T	VDE OR RAILE	P-
WELL DIAMETER	2 0	WELL	SCREEN INT	ERVAL DEPTH	1:	1	TIC DEPTH NATER	1.87	. I	~	~
(inabaa):		0	(TO:	et to	PTH - STATIC	(fee			(2(1,244)	TIC PU	<u> </u>
		:: 1 WELL VO	lar		$\frac{1}{3}$	* 11 s.	aparenty.	iters/foot = ***	0.60	. 7 liters	
INITIAL PU	DLUME = (JMP OR TUBI WELL (feet):	***	FINAL PU	MP OR TUBIN			AT 1548	PURGING ENDED A		TOTAL VOLUM PURGED (Lite	rs):) <u>/ </u>
PUMP SETTING / PSI	TIME	VOLUME PURGED (liters)	CUMUL. VOLUME PURGED (liters)	PURGE RATE (L/min)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µmhos/cm or µS/cm)	DISS. OXYGEN (mg/L)	-	OXYGEN REDUCTION POTENTIAL (mV)
1	155)	((iters)	(III.613)	0,13	15.10	4.96	21 %	0,040	4.56	$\bot \setminus I$	31,8
1	1556	0.65	1,05		15.62	496	2190	0 036	4.5	\/	73.4
. /	11.01	· · · · · · · · · · · · · · · · · · ·	1,7_		15.70	4.13	33.20	<u>್ ೧.೦೩</u> ೧	70,72	X	150.1
1	1000		2,35		15.84	440	32.23	0036	0.50	 	187
	1611		7,		15.86	4.00	22.11	0,035	10.76	 	125-4
	1616	winds	5.45	 	15,98	4,94	23.26	, 0.039		1	75.8
$\frac{I}{I}$	1021	- V -	1 7 2	 	1 7 7 10	Summer	<u> </u>	, , , , , , , , , , , , , , , , , , , ,		1	75.6
/ WELL CA	 .PACITY (Lite	rs Per Foot):	0.75" = 0.075;	1" = 0.15;	1.25" = 0.23;	2" = 0.60;	3" = 1 .40	; 4" = 2.46;	5" = 3.86;	6" = 5.56; 12	" = 22.05
							a				74,
		1119	(5100 p			ING DA	IA			0.1401.010	
		/ AFFILIATION	1 :	SAMPLER(S)	SIGNATURES:			SAMPLING INITIATED AT	: 1622	SAMPLING ENDED AT:	1625
PUMP OF	RTUBING	Kincars		SAMPLE PU				TUBING MATERIAL CO	ODE:	Ā	PTFE
	WELL (feet)) N	FIELD-FILTE	(L per minute): RED: Y N	FILTI	R SIZE:	μm	DUPLICATE:	Y (N
FIELD DE	CONTAMINA SAMP	LE CONTAINE	<u>N</u> :R	Filtration Equ		LE PRESER	VATION				
		ECIFICATION	VOLUME			RESERVAT			INTENDED	ANALYSIS AND	O/OR METHOD
#0	ONTAINERS		40mL			USED			826	0 (voc)
					100						
									<u> </u>		
				-			<u>.</u>				
	······································										
											··
REMAR	KS:	tal no	011 -3	> 34	121						
NOTES:		STABILIZA	TION CRITE	RIA FOR TH	REE CONSEC	UTIVE WA	ER QUALI	TY READING	<u> </u>		

<u>+</u> 0.5°

ORP: <u>+</u> 10 %

Temp.:

Dissolved Oxygen:

± 10 mg/l

pH: Specific Conductance:

<u>+</u> 0.2 units <u>+</u> 05%

				ROUN	DWATE		1PLING	G LOG			
SITE NAME;	Ashland	d Atlanta			SIT LO		Alterman/ To	era Shopping	Center		
WELL NO:	:	W-19	B	SAMPL	EID: ^	16-16	1B_		DATE:	-19-20	014
					PURG	ING DAT	۲Δ				
WELL		WEI	L SCREEN IN	TERVAL DEPT			ATIC DEPTH		PURGE PUMP	TYPE OR BAILE	 R:
DIAMETEI	R 2		50	feet to	O feet		WATER	5.11	Buck for	K	black
(inches): WELL VO	LUME PURGI	E: 1 WELL \		TAL WELL DE	PTH - STATI	C DEPTH TO	WATER)	X WELL CA			13 167 464
WELL V	OLUME = ((J.004.	∱ / feet ●	<u> </u>	5 fee	et) 🕹 👅	9	liters/foot =		liters	.
	JMP OR TUBI WELL (feet):	ING [*]		JMP OR TUBIN N WELL (feet):	NG	PURGING INITIATED	AT: \	PURGIN ENDED		TOTAL VOLUI PURGED (Lite	irs): 😉 🗸
PUMP SETTING / PSI	TIME	VOLUME PURGED (liters)	CUMUL. VOLUME PURGED (liters)	PURGE RATE (L/min)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND, (μmhos/cr or μS/cm)		endidir (coo)	OXYGEN REDUCTION POTENTIAL (mV)
1/	1741	0,4	0,4	0.2	15,21	5,99	19.89	0,08	9 2.67		55,2
	1740	1.0	11.4		15.50	5.84	31,6	0.083	1032	X	60,4
I	1751		2.4		15,68	2.87	21,22	0.08	3 1, 21		172,3
	1356		3 4		15.93	5.81	21:48	0,082	1007	$\perp \! \! / \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	P.2.4
	1801		4.4		15,99	5001	21,50	(1.08)	1,00	/	3716
	1866	W	5.4		15.91	5,81	21.51	0 (3)	. 100	∦ ////	33.
										∐	1
/	DACITY (Lit-	- D FA-	0.707 - 0.075	1" = 0.15;	1.25" = 0.23;	2" = 0.60;	3 " = 1.40	4" = 2.46:	5" = 3,86;	6 " = 5,56; 12	" = 22.05
WELL CA	PACITY (Liter	s Per Foot):	0.75 " = 0.075;	1" = 0.15;	1.25" = 0.23;	2" = 0.60;	3 = 1.40	, 4 – 2.40,	3 - 3.00,	0 - 5,56, 12	- 22.05
	Ande	:a G	5100P		SAMPL	ING DA	TA				
SAMPLE	BY (PRINT)	17 .		SAMPLER(S)	SIGNATURES:		P Alexandra of the American Street of the American Street of the Street	SAMPLING INITIATED A	r: 1807	SAMPLING ENDED AT:	1804
	TUBING WELL (feet):	ê- e	•	SAMPLE PUN	VIP (L per minute):	· Z		TUBING MATERIAL C	ODE:	01	FE
	CONTAMINA	7	<u>N</u>	FIELD-FILTE	RED: Y (N		R SIZE:	µm	DUPLICATE:	Υ (<u> </u>
		E CONTAINE	R	Tildedon Equi	<u> </u>	LE PRESER\	/ATION				
# C0	ONTAINERS	CIFICATION	VOLUME		Р	RESERVATI USED	VΕ		INTENDED	ANALYSIS AND	OR METHOD
	3		40ml			HILL			82	60 (VOC)	
											1010
REMARK	S: 🕥		1 6	tun est	The same of the sa	(1)) ()		1 ((0,0,0)	<u> </u>	. J
)(()トh STABILIZAT	3 1/	January VIII	EE CONSECU	ンし TIVE WATE	R QUALIT	Y READING	<u> </u>	<u>۱۳۷۲</u>	COVA
NOTES:	1.		ION CRITER	IA FOR THR	EE CONSÉCU	TIVE WATE	R QUALIT	Y READING <u>+</u> 10 %	Slowest S	ssible *	

Dissolved Oxygen:

<u>+</u> 10 mg/l

pH: <u>+</u> 0.2 units Specific Conductance: <u>+</u> 05%

Temp.:

<u>+</u> 0.5°

LOCATION:

Alterman/ Tera Shopping Center

SITE

SITE

NOTES: 1.

ASSING JONESDOTO	DL		DAT	re: \\/			
	SAMPLE ID:	<u> </u>					
		OULO DATA					
	PURCEREEN INTERVAL DEPTH:	STATIC DEPTH	8	RGE PUMP TY	PE OR BAILER:		
DIAMETER 2	- 5496 fee	t (feet):		Dedicated Bladder Pump) + FLOW CELL VOLUME			
nches): QUIPMENT VOLUME PURGE: 1 EQUIPonly fill out if applicable)	PMENT VOL. = PUMP VOLUME + (TUE = 12 liters + (BING CAPACITY X TO	P. Com	+ 0.4	liters = li	iers	
NITIAL PUMP OR TUBING Se A	FINAL PUMP OR TUBING DEPTH IN WELL (feet):	PURGING INITIATED AT: 1700	PURGING ENDED AT:	1727	TOTAL VOLUME PURGED (Liters):	OXYGEN	
PUMP VOLUME	CUMUL. DEPTH TO VOLUME PURGE WATER PURGED RATE (feet)		COND. (µmhos/cm or µS/cm)	DISS. OXYGEN (mg/L)	TURBIDITY (NTUs)	REDUCTION POTENTIAL (mV)	
/ PSI (liters)	(liters) (L/min) (64)		0,210	3,37 3,35		38,6	
	3.5 15 15.10	6 19	0,213	3,2]	And the second s	3415	
1 1712 2.5	8.5 .5 15.39	1 920 18.7)	0,216	3,52		27.8	
1 1722 2.5	(1 .5 15.4	7 9,17 16.01	0,213	3.40	Committee of the Commit	4	
1 1727 2.5	13.5 .5 15.4						
		4: 1/4" = 0.0097; 5/16"	= 0.0151; 3/8'	" = 0.0217;	1/2" = 0.0386;	5/8" = 0.060	
	TO CONTINUE	APLING DATA	SAMPLING INITIATED AT:	17)5	SAMPLING ENDED AT:	130	
SAMPLED BY (PRINT) / AFFILIATION:	SAMPLER(S) SIGIOTO I		Heli i Dan Estado				
SAMPLED BY (PRINT) / AFFILIATION:	SAMPLE PUMP		TUBING MATERIAL CO	<u> </u>	E/PIEE		
PUMP OR TUBING DEPTH IN WELL (feet): 80	SAMPLE PUMP FLOW RATE (L per minu	N FILTER SIZE: _	MATERIAL CO	<u> </u>	PE/PIEE Y		
PUMP OR TUBING BO FIELD DECONTAMINATION: Y	SAMPLE PUMP FLOW RATE (L per minu FIELD-FILTERED: Y Filtration Equipment Typ	N FILTER SIZE: e: SAMPLE PRESERVATION	MATERIAL CO	DE: HDP	PE / PIEE Y		
PUMP OR TUBING DEPTH IN WELL (feet): 80 FIELD DECONTAMINATION: Y SAMPLE CONTAINER SPECIFICATION	SAMPLE PUMP FLOW RATE (L per minu FIELD-FILTERED: Y Filtration Equipment Typ	N FILTER SIZE:e: SAMPLE PRESERVATION PRESERVATIVE USED	MATERIAL CO	DE: HDP	Υ (
PUMP OR TUBING DEPTH IN WELL (feet): 80 FIELD DECONTAMINATION: Y SAMPLE CONTAINER SPECIFICATION	SAMPLE PUMP FLOW RATE (L per minu FIELD-FILTERED: Y Filtration Equipment Typ R	N FILTER SIZE:e:	MATERIAL CO	DE: HDP	Y (1		
PUMP OR TUBING DEPTH IN WELL (feet): 80 FIELD DECONTAMINATION: Y SAMPLE CONTAINER SPECIFICATION # CONTAINERS	SAMPLE PUMP FLOW RATE (L per minu FIELD-FILTERED: Y Filtration Equipment Typ R VOLUME	N FILTER SIZE:e: SAMPLE PRESERVATION PRESERVATIVE USED	MATERIAL CO	DE: HDP	Y (1		
PUMP OR TUBING DEPTH IN WELL (feet): 80 FIELD DECONTAMINATION: Y SAMPLE CONTAINER SPECIFICATION # CONTAINERS	SAMPLE PUMP FLOW RATE (L per minu FIELD-FILTERED: Y Filtration Equipment Typ R VOLUME	N FILTER SIZE:e: SAMPLE PRESERVATION PRESERVATIVE USED	MATERIAL CO	DE: HDP	Y (1		
PUMP OR TUBING DEPTH IN WELL (feet): 80 FIELD DECONTAMINATION: Y SAMPLE CONTAINER SPECIFICATION # CONTAINERS	SAMPLE PUMP FLOW RATE (L per minu FIELD-FILTERED: Y Filtration Equipment Typ R VOLUME	N FILTER SIZE:e: SAMPLE PRESERVATION PRESERVATIVE USED	MATERIAL CO	DE: HDP	Y (1		
PUMP OR TUBING DEPTH IN WELL (feet): 80 FIELD DECONTAMINATION: Y SAMPLE CONTAINER SPECIFICATION # CONTAINERS	SAMPLE PUMP FLOW RATE (L per minu FIELD-FILTERED: Y Filtration Equipment Typ R VOLUME	N FILTER SIZE:e: SAMPLE PRESERVATION PRESERVATIVE USED	MATERIAL CO	DE: HDP	Y (1		
PUMP OR TUBING DEPTH IN WELL (feet): 80 FIELD DECONTAMINATION: Y SAMPLE CONTAINER SPECIFICATION # CONTAINERS	SAMPLE PUMP FLOW RATE (L per minu FIELD-FILTERED: Y Filtration Equipment Typ R VOLUME	N FILTER SIZE:e: SAMPLE PRESERVATION PRESERVATIVE USED	MATERIAL CO	DE: HDP	Y (1		
PUMP OR TUBING DEPTH IN WELL (feet): 80 FIELD DECONTAMINATION: Y SAMPLE CONTAINER SPECIFICATION # CONTAINERS	SAMPLE PUMP FLOW RATE (L per minu FIELD-FILTERED: Y Filtration Equipment Typ R VOLUME	N FILTER SIZE:e: SAMPLE PRESERVATION PRESERVATIVE USED	MATERIAL CO	DE: HDP	Y (1		

STABILIZATION CRITERIA FOR THREE CONSECUTIVE WATER QUALITY READINGS

<u>+</u>5%

<u>+</u> 5%

<u>+</u> 0.2 units

Temp.:

Specific Conductance:

pH:

<u>+</u> 1 mg/L

<u>+</u> 10 %

Dissolved Oxygen:

ORP:

SITE		SITE	
NAME;	Ashland Jonesboro	LOCATION: Alterman/ Tera Sho	pping Center
WELL NO:	MW-22B	SAMPLE ID: MW-220	DATE: ()/14/14/

PURGING DATA

						MO DA					
WELL DIAMETER	R 2		SCREEN INTE		60	то	ATIC DEPTH WATEP	4.64		TYPE OR BAILER	
(inches):						(fee				dicated Bladder Pi	nwb
	NT VOLUME t if applicable)		MINENT VOL	= PUMP VC	LUME + (TUBIN	IG CAPACIT	Y X T	UBING LENGT	H) + FLOW CE	ILL VOLUME	
(Oray in Ou	t ii applicable)			= 0.25	الله + (الله liters + ()¶ lite	rs/foot X	45 fee) + 🛫 🗐	liters =	liters
	IMP OR TUBI WELL (feet):	ING 45		MP OR TUBIN WELL (feet):	IG 45	PURGING INITIATED	AT:1140	PURGING ENDED A		TOTAL VOLUM PURGED (Liters	
PUMP SETTING / PSI	TIME	VOLUME PURGED (liters)	CUMUL. VOLUME PURGED (liters)	PURGE RATE (L/min)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µmhos/cm or µS/cm)	DISS. OXYGEN (mg/L)	TURBIDITY (NTUs)	OXYGEN REDUCTION POTENTIA (mV)
	Control of the contro	- I			14.67	6.17	14.87	0:277	3.85	The second of the second secon	2021
1	1146	. 5	. 6	# Mile-	14.64	6.79	13.80	0.223	3,32	and the second s	203.6
/	-5	ů.	1.6	.2	14.70	6.91	12:15	0.186	1.85	Valuetine and the same of the	198.3
1	1156	į	2.6	, 2.	14.70	6.91	11.15	0.181	1.50	A Marianta Commission of a second second	19615
1	ilot	ŧ	7.6	. 2	14.70	647	12.55	0.185	1.10	and the same of th	140.6
1	1206	: veda	ч. б	. 2	14.70	7:00	13.68	0:178	1.03	Company of the Control of the Contro	185.6
1											
1											
TUBING IN	ISIDE DIA. C.	APACITY (Lite	ers/Ft.): 1/8" = (0.0024; 3/	6" = 0.0054;	1/4" = 0.009	7; 5/16" =	0.0151; 3/8	= 0.0217;	1/2" = 0.0386;	5/8" = 0.060

SAMPLING DATA

		Oranii Enito Britisi				
SAMPLED BY (PRINT) / AFF		SAMPLER(S) SIGNATURES: Edulu Liferelin	SAMPLING INITIATED AT	: 1207	SAMPLING 1209	
DUMP OF TURING	.5	SAMPLE PUMP FLOW RATE (L per minute):	TUBING MATERIAL C	E/PIEE.		
FIELD DECONTAMINATION		FIELD-FILTERED: Y N FILTER SIZE: Filtration Equipment Type:	µ m	DUPLICATE: Y		
SAMPLE CO SPECIFIC		SAMPLE PRESERVATION		INTENDED	ANALYSIS AND/OR METHOD	
# CONTAINERS	VOLUME	PRESERVATIVE USED		***************************************	WE TOTO THE THOD	
3	40 ml	HCL			8260 (VOC)	
REMARKS:						

NOTES: 1. STABILIZATION CRITERIA FOR THREE CONSECUTIVE WATER QUALITY READINGS

Temp.: ± 5 %

pH:

Dissolved Oxygen:

± 1 mg/L

Specific Conductance:

<u>+</u> 0.2 units <u>+</u> 5% ORP: ± 10 %

SITE NAME: Ashland Jonesboro SAMPLE ID: MW-19D DATE: 11/19/19

PURGING DATA

					PURGII	NG DAT	A				
		I MELL	SCREEN INTE	RVAL DEPTH	:		TIC DEPTH		PURGE PUMP 1	TYPE OR BAILER:	
WELL DIAMETER	2		in the	1 mc		TO V		,93_			mp
(inches):	TVOLUME	DIRGE: 1 FQ	ر کا fee UIPMENT VOL.	= PUMP VOI	LUME + (TUBIN				(H) + FLOW CE		
EQUIPMEN	LAOCOM	0,002, 124		= 0.7\5	liters + (iO	روم (liter	s/foot X	96 fee	et) + 0.14	11010 7 4.2	liters
INITIAL PUI	MP OR TUBI	NG ()	FINAL PUN	IP OR TUBIN WELL (feet):		DUDCING	at:[547	PURGING ENDED A		TOTAL VOLUME PURGED (Liters):
PUMP SETTING / PSI	NELL (feet):	VOLUME PURGED	CUMUL. VOLUME PURGED (liters)	PURGE RATE (L/min)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (μmhos/cm or μS/cm)	DISS. OXYGEN (mg/L)	TURBIDITY (NTUs)	OXYGEN REDUCTION POTENTIAN (mV)
1	1544	(liters)	(Mers)	. 5	15,58	10,74	21.76	0,382	2.36	And the second of the second o	11512
	- 13 <u>- 1</u> 1554	.25	1.05	15	16.25	10.78	22,36	01392	104	The same of the sa	95.8
- 	1554	,25	1.30	.5	16.43	10.80	(Ja C. V.	01344	1,03		91,1
$\frac{1}{1}$	1604	25	1155	15	16.65	10.78	20.00	0.394	0.07	The same of the sa	87.5
1	1609	.25	1.8	. 5	16 65	10:77	20.12	0:392		Commence of the Commence of th	84.3
1	16-64	.27	2.05	, 5	16.65	10,76	20.69	0.390	0.87	north and the second	1 2 11 2
1							<u> </u>				
									HO!! 0-0317:	1/2" = 0.0386;	5/8" = 0.060
TUBING I	NSIDE DIA. C	APACITY (Li	ters/Ft.): 1/8" =	0.0024; 3	/ 16" = 0.0054;	1/4" = 0.009	7; 5/16" =	0.0151; 3	0.0217,	3.0007	

SAMPLING DATA

		SAMPLING DATA	+			
SAMPLED BY (PRINT) / AFF	FILIATION:	SAMPLER(S) SIGNATURES:	SAMPLING INITIATED AT	5	SAMPLING ENDED AT:	
Edge Jorde ANT	50	SAMPLE PUMP FLOW RATE (L per minute):	TUBING MATERIAL C	ODE: HDP	E/PIEE	
DEPTH IN WELL (feet):		FIELD-FILTERED: Y N FILTER S Filtration Equipment Type:	SIZE: μm 	DUPLICATE: Y N		
SAMPLE CO SPECIFI	CATION	SAMPLE PRESERVATIVE PRESERVATIVE		INTENDED	ANALYSIS AND/OR METHOD	
# CONTAINERS	VOLUME	USED			8260 (VOC)	
3	40 ml	HCL				
REMARKS:			D OUNLITY BEADIN	GS.		

NOTES: 1.

STABILIZATION CRITERIA FOR THREE CONSECUTIVE WATER QUALITY READINGS

Temp.: pH: <u>+</u> 5 %

Dissolved Oxygen:

<u>+</u> 1 mg/L

Specific Conductance:

<u>+</u> 0.2 units <u>+</u> 5% ORP: ± 10 %

2de

	ROUNDWATER					
TE AME: Ashland Atlanta	SITE LOC	ATION: Alterman/ Ter	a Shopping Cent		\$ 24 E	
ELL NO: MW-21B	SAMPLE ID:	W-21B	D/	TE:	_ \ `	
	DURGI	NG DATA				
Lumi copechini		STATIC DEPTH	P	JRGE PUMP T	YPE OR BAILER:	
VELL WELL SCREEN INT	2 a 🗲	TO WATER	4.93	posis	taltic	PUMP
nches): /ELL VOLUME PURGE: 1 WELL VOLUME = (TO	eet to <u> </u>	(feet): * DEPTH TO WATER) X	WELL CAPAC	TTY	<u>, </u>	
1 (2 (1 T) X	34,5 feet		ters/foot =	<i>O</i> _¦	liters	
ITIAL PUMP OR TUBING FINAL PL	JMP OR TUBING N WELL (feet):	PURGING 1312	PURGING ENDED AT	1346	TOTAL VOLUME PURGED (Liters): 6 8 DOXYGEN
PUMP VOLUME VOLUME VOLUME PURGED PURGED	PURGE DEPTH TO WATER RATE (feet)	pH TEMP. (standard (°C)	COND. (μmhos/cm or μS/cm)	DISS. OXYGEN (mg/L)	THORIDITY (AITH)	REDUCTIO POTENTIA (mV)
/ PSI (liters) (liters) / 1314 0.4 0.4	(L/min) (15,31)	5.14 21.00	0006	5013		36.2
1 1319 1,0 1,4	15.55	5-72 21,0	0063	5,28	 \ 	C16
1 1334 1 2.4	15.60	5.73 21.4		57.39	 X	63 4
1 1329 / 3.4	15.0	5,73 21.19		5.66	 	76.1
1 371 1 4,4	15.61	5,72 21,2	3 0,001	5.58	+ /- \	7,
1 1339 1 504	15,01	5.72 21.23	30.061	5.61	 /- \	76.
/			 	 	 	
1	• 1" = 0.15: 1.25" = 0.23;	2" = 0.60; 3" = 1.40	4" = 2.46;	5 " = 3.86;	6 " = 5.56; 12 "	= 22.05
SAMPLED BY (PRINT) / AFFILIATION:	SAMPI SAMPLER(S) SIGNATURES:	LING DATA	SAMPLING INITIATED AT:	1340	SAMPLING ENDED AT:	1345
PUMP OR TUBING 74	SAMPLE PUMP	. 2	TUBING MATERIAL CO	DE:	5 f	"TFE37T"
DEPTH IN WELL (feet): 3 11 3	FLOW RATE (L per minute): FIELD-FILTERED: Y	FILTER SIZE:	μm	DUPLICATE:	(Ž) N	1
FIELD DECONTAMINATION: Y N SAMPLE CONTAINER	Filtration Equipment Type:	PLE PRESERVATION				
SPECIFICATION	i e	PRESERVATIVE		INTENDED	ANALYSIS AND	OR METHOL
#CONTAINERS VOLUME		USED		<u> </u>	.60(Vo)	
3 40ml		Eng.				
				7		
REMARKS: Total Degl	th 39.45	DITOE WATER OHAL	D	p - 1		
REMARKS: Total Degree NOTES: 1. STABILIZATION CRIT	ERIA FOR THREE CONSEC	CUTIVE WATER QUAL ORP:	ITY READING	p - 1		

<u>+</u> 0.5° Temp.: <u>+</u> 0.2 units pH:

Specific Conductance: <u>+</u> 05%

SITE			oro		SITE	EATION: A	\Iterman/	Tera Shoppi	ng Center			
NAME:		nd Jonesb	0010	SAMPLE	ID: MW-				DATE: (\/ C	1/14		
WELL NO:	MW-	41 C		O/ WILL CO	IVV	<u> </u>						
					PURGI	NG DAT				VOE OR BAILER		
WELL		WELL	SCREEN INTE	RVAL DEPTH	l:		TIC DEPTH	1	PURGE PUMP I	YPE OR BAILER	•	
DIAMETER		6	415 fee	et to	1.19 feet_	(feet		*	Ded H) + FLOW CEI	licated Bladder Pu LL VOLUME	ımp	
EQUIPMEI (only fill ou	NT VOLUME P ut if applicable)	URGE: 1 EC	QUIPMENT VOL	., = PUMP VO = 0.,25	LUME + (TUBIN	ON liter		0.0		liters = \13	liters	
INITIAL PL	UMP OR TUBII I WELL (feet):	NG 6 8	FINAL PUI DEPTH IN	VIP OR TUBIN WELL (feet):		PURGING INITIATED	AT: 1319	1	T:1551	TOTAL VOLUMI PURGED (Liters	oxygen	
PUMP SETTING / PSI	TIME	VOLUME PURGED (liters)	CUMUL. VOLUME PURGED (liters)	PURGE RATE (L/min)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (μmhos/cm or μS/cm)	DISS. OXYGEN (mg/L)	TURBIDITY (NTUs)	REDUCTION POTENTIAL (mV)	
	1321	. 6	. 6	. 2	15125	7.35	18.94	0.168	3,24		171.6	
1	1326	* **		.2_	15.25	7.42	18.69	0.168	3,36		1 65.2	
1	1331) (, 2	15.45	7.34	14.72	0.163	1,25	Marian Ma	159.9	
	1336	-	3.6	, 2	15.83	7128	14.95	0.102	0.80	parameter of the parame	154.5	
1	1341	, yester	4.6	.2_	15.83	7.27	20.05	0.163		- Aller and the second	150.5	
1	1346	47.00	5.6	1	15.83	7.27	19,99	0.165	0:46		146.6	
1	1351	· · · · · ·	6.6	1	15.73	7.24	20.16	0.163	0.43		1 10	
									/8" = 0.0217;		5/8" = 0.0603	
TUBING	INSIDE DIA. C	APACITY (Li	iters/Ft.): 1/8"	= 0.0024; 3	/ 16" = 0.0054;	1/4" = 0.009	7; 5/16"	= 0.0151; 3	16 - 0.0217,	112 0.000,		
					SAMP	LING DA	ATA		_			
CAMPLE	ED BY (PRINT)	/ AFFILIATIC	ON:	SAMPLER(S	SIGNATURES			SAMPLING	7	SAMPLING ENDED AT:	1355	
15.50	Juda (v (*)	I	Edde L				INITIATED AT: 135 3 ENDED AT: 1				
PLIMP C	OR TUBING	e C	1	SAMPLE PU	MP ∃ (L per minute <u>):</u>	. 2		MATERIAL C	ODE: HDF	PE / PTFE		
	IN WELL (feet) DECONTAMINA		<u> </u>	FIFI D-FILT	ERED: Y	Į FILT	ER SIZE:	μm	DUPLICATE: Y N			
FIELD		LE CONTAIN		Filtration Eq	uipment Type: _ SAM	PLE PRESER	EVATION			ANALYSIS AND	VAR METHAD	
	SP	ECIFICATION	N			PRESERVAT			INTENDE	J ANALYSIS AND	VOICIVILITIOS	
#	CONTAINERS		VOLUME			USED_ HCL				8260 (VOC)		
	3	_	40 ml									
		l l								 ;		
									}			

NOTES: 1.

STABILIZATION CRITERIA FOR THREE CONSECUTIVE WATER QUALITY READINGS

Temp.: $\pm 5 \%$ pH: ± 0.2 units Dissolved Oxygen:

Specific Conductance:

<u>+</u> 5%

ygen: <u>±</u> 1 mg/L ORP: <u>±</u> 10 %

TE AME: Ashland Atla	anta		SITE	ATION: A	terman/ Ter	a Shopping Cent	\$ 1	1-14-7	014		
ELL NO: YW	-22 A	SAMPLE	D: <u>/ </u>	ノみる	A	D/	ATE:	19 7	01		
				10 D 17							
			PURGIN	NG DATA	IC DEPTH	- P	URGE PUMP TY	PE OR BAILER:			
/ELL IAMETER 2	WELL SCREEN INT	72	Ofeet		ATER \		Pelisy		PUMI		
nches): /ELL VOLUME PURGE: 1		eet to TAL WELL DEP		DEPTH TO V	VATER) X	WELL CAPAC	DITY (
WELL VOLUME = (0.0019 feet	<u> </u>	feet) (h	34 1	ters/foot =		O liters TOTAL VOLUME	any man		
NITIAL PUMP OR TUBING DEPTH IN WELL (feet):	FINAL PL	JMP OR TUBING N WELL (feet):	i	PURGING INITIATED	AT: 10	PURGING ENDED AT	: 11001	PURGED (Liters):	OXYGEN		
PUMP V	CUMUL. VOLUME VOLUME PURGED PURGED (liters) (liters)	PURGE RATE (L/min)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (μmhos/cm or μS/cm)	DISS. OXYGEN (mg/L)	(A)	REDUCTION POTENTIAL (mV)		
1 1107 (7.4 0.4	00	15.05	5.10	17.26	0.067	1.43	1	-18.5		
1 1112	0,5 004		15,11	535	15,05		1,09	V	-27,		
1 11()	1 104		15.17	5,30	110014	0.027	0,36	Λ	-28.		
	1 8 4		15-11	5,31	16011	0,027			-27/		
1 1 22	1 7.	- - 	15.19	5.31	16013			1	-700		
		1	1. 0				<u> </u>	/\	<u> </u>		
					07 - 4.40	4" = 2.46;	5 " = 3.86;	6" = 5.56; 12 " =	= 22.05		
WELL CAPACITY (Liters F	Per Foot): 0.75" = 0.075	; 1" = 0.15;	1.25" = 0.23;	2" = 0.60;	3" = 1.40	4 - 4 40,	<u> </u>				
	h : 5 / -0	38	SAMPI	LING DA	TA						
SAMPLED BY (PRINT) / A	Anter Grac AFFILIATION:	SAMPLER(S)	SIGNATURES:			SAMPLING INITIATED AT:	1133	SAMPLING ENDED AT:	135		
Daniel King		SAMPLE PUN	//P	o]		TUBING MATERIAL CODE: 0 TFE					
OLÍMP OR THRING	23	FLOW RATE	(L per minute): RED: Y N	FILTE	R SIZE:	μm	DUPLICATE:	Y (N	>		
PUMP OR TUBING DEPTH IN WELL (feet):	00	I TELEDITION	tration Equipment Type: SAMPLE PRESERVATION				-				
DEPTH IN WELL (feet): FIELD DECONTAMINATION	ON: Y N	Filtration Equ		 PLE PRESER	VATION			ANALYGIC AND/	INTENDED ANALYSIS AND/OR METHOD		
DEPTH IN WELL (feet): FIELD DECONTAMINATION SAMPLE SPEC	ON: Y N CONTAINER DIFICATION	Filtration Equ	SAMF	PRESERVAT							
DEPTH IN WELL (feet): FIELD DECONTAMINATION SAMPLE SPECTOR # CONTAINERS	ON: Y N CONTAINER DIFICATION VOLUME	Filtration Equ	SAMF					ANALYSIS AND/O			
DEPTH IN WELL (feet): FIELD DECONTAMINATION SAMPLE SPEC	ON: Y N CONTAINER DIFICATION	Filtration Equ	SAMF	PRESERVAT USED							
DEPTH IN WELL (feet): FIELD DECONTAMINATION SAMPLE SPECTOR # CONTAINERS	ON: Y N CONTAINER DIFICATION VOLUME	Filtration Equ	SAMF	PRESERVAT USED							
DEPTH IN WELL (feet): FIELD DECONTAMINATION SAMPLE SPECTOR # CONTAINERS	ON: Y N CONTAINER DIFICATION VOLUME	Filtration Equ	SAMF	PRESERVAT USED							
DEPTH IN WELL (feet): FIELD DECONTAMINATION SAMPLE SPECTOR # CONTAINERS	ON: Y N CONTAINER DIFICATION VOLUME	Filtration Equ	SAMF	PRESERVAT USED							
DEPTH IN WELL (feet): FIELD DECONTAMINATION SAMPLE SPECTOR # CONTAINERS	ON: Y N CONTAINER DIFICATION VOLUME	Filtration Equ	SAMF	PRESERVAT USED							
DEPTH IN WELL (feet): FIELD DECONTAMINATION SAMPLE SPECTOR # CONTAINERS	ON: Y N CONTAINER DIFICATION VOLUME	Filtration Equ	SAMF	PRESERVAT USED							
DEPTH IN WELL (feet): FIELD DECONTAMINATION SAMPLE SPECTOR # CONTAINERS	ON: Y N CONTAINER DIFICATION VOLUME	Filtration Equ	SAMF	PRESERVAT USED							
DEPTH IN WELL (feet): FIELD DECONTAMINATION SAMPLE SPECTOR # CONTAINERS	ON: Y N CONTAINER DIFICATION VOLUME	Filtration Equ	SAMF	PRESERVAT USED							
DEPTH IN WELL (feet): FIELD DECONTAMINATION SAMPLE SPEC # CONTAINERS	ON: Y N CONTAINER DIFICATION VOLUME	Filtration Equ	SAMF	PRESERVAT USED							

<u>+</u> 10 mg/l

Dissolved Oxygen:

± 0.5°

<u>+</u> 05%

<u>+</u> 0.2 units

Temp.:

Specific Conductance:

pH:

SITE					SITE	ATION: A	lterman/ T	era Shoppin	g Center		
NAME:		nd Jonesbo	010	SAMPLE	ID: MW ~					111	
WELL NO:	MW-J	<u> </u>		JAMI EE	IW	In fre al				1	
					PURGI	NG DAT	A				
		LA FELL	SCREEN INTE	RVAL DEPTH			TIC DEPTH	Pl	JRGE PUMP T	YPE OR BAILER	
WELL DIAMETER	2			and you			VATEP	4.64	Dedi	icated Bladder Pu	mp
		1	-1 ₆ 4 fee	et to 19	feet /TURIN	(feet		UBING LENGTH	l) + FLOW CEL	L VOLUME	
EQUIPMEN	NT VOLUME I t if applicable)	PURGE: 1 EQ	UIPMENT VOL	PUMP VO	LUME + (TUBIN	Silver				n en	liters
INITIAL PU	JMP OR TUBI		FINAL PUN	= 0.25 MP OR TUBIN WELL (feet):		PURGING			: 1206	TOTAL VOLUMI PURGED (Liters	= 4, 6 TOXYGEN
DEPTH IN	WELL (feet):	- 	CUMUL.		DEPTH TO	pH	TEMP.	COND.	DISS. OXYGEN	TURBIDITY	REDUCTION
PUMP SETTING / PSI	TIME	VOLUME PURGED (liters)	VOLUME PURGED (liters)	PURGE RATE (L/min)	WATER (feet)	(standard units)	(°C)	(μmhos/cm or μS/cm)	(mg/L)	(NTUs)	POTENTIAL (mV)
1		. 1		(A)	14.67	6.17	14.87	0.277	3,85	, inches and the same and the s	203.6
	1116	.5	16	e surve	14.64	6.79	13.80	0.223	3,32	The same of the sa	198.3
- 	1,51		1.6	. 2_	19.70	6.9.1	12:15	0.186	1.50		196,5
'	1156	i	2.6	, 2	14.70	6.91	11:15	0.18	1,10	April a de la constitución de la	190.6
7	1201	į	7.6	1,2	14.70	6.97	12.33	0.185			185.9
1	1206	4	ч. 6	1.2	14.70_	7:00	13.68	0.178	1.03		
1	Egun					 		<u> </u>	 		
								= 0.0151; 3/8		1/2" = 0.0386;	5/8" = 0.060
TUBING	INSIDE DIA.	CAPACITY (Li	ters/Ft.): 1/8"	= 0.0024; 3	/ 16" = 0.0054;	1/4" = 0.009	37; 5/16	- 0.0131, 0.0	<u> </u>		
					SAMP	LING DA	ATA				
SAMPLE	D BY (PRINT) / AFFILIATIO	N:		s) SIGNATURES);		SAMPLING INITIATED AT:	1207	SAMPLING ENDED AT:	1209
k	Joseph /	ANGLE	· u	Eelel.	Lyculn_			TUBING			
PUMP O	OR TUBING	45	k	SAMPLE PU	JMP E (L per minute):	. 2-		MATERIAL CO			
	IN WELL (fee	·) ·	<u> </u>	FIELD-FILT	ERED: Y ! uipment Type: _	<u>N</u> FILT	ER SIZE: _	µm	DUPLICATE:	Y (<u>N</u>
FIELD D		PLE CONTAIN		Finiagon Ec	SAN	===== IPLE PRESE	RVATION		INTENDE	D ANALYSIS AND	OOR METHOD
	sı	PECIFICATION	1			PRESERVA	TIVE		MILLIADE		
#	CONTAINERS		VOLUME			USED HCL				8260 (VOC)
	3		40 ml								
		_									

NOTES: 1.

REMARKS:

STABILIZATION CRITERIA FOR THREE CONSECUTIVE WATER QUALITY READINGS <u>+</u>5% Temp.:

Dissolved Oxygen:

<u>+</u> 10 % ORP:

pH: Specific Conductance:

<u>+</u> 0.2 units ± 5%

<u>+</u> 1 mg/L

ATTACHMENT C

Laboratory Reports

13

1

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-103647-1 Client Project/Site: Ashland Alterman

For:

EHS Support, LLC 3909 Tweedsmuir Drive Columbus, Ohio 43221

Attn: Ms. Michelle Stayrook

Jerry Janier

Authorized for release by: 7/31/2014 9:47:58 AM

Jerry Lanier, Project Manager I (912)354-7858 e.3410 jerry.lanier@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at:www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: EHS Support, LLC Project/Site: Ashland Alterman

TestAmerica Job ID: 680-103647-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Method Summary	5
Definitions	6
Detection Summary	7
Client Sample Results	9
Surrogate Summary	25
QC Sample Results	26
QC Association	35
Chronicle	36
Chain of Custody	39
Receipt Checklists	41
Certification Summary	42

Case Narrative

Client: EHS Support, LLC Project/Site: Ashland Alterman TestAmerica Job ID: 680-103647-1

3

Job ID: 680-103647-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: EHS Support, LLC

Project: Ashland Alterman

Report Number: 680-103647-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

The samples were received on 07/25/2014; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 3.0 C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples MW-3A (680-103647-1), MW-3B (680-103647-2), MW-8A (680-103647-3), MW-8B (680-103647-4), MW-8C (680-103647-5), MW-9A (680-103647-6), MW-9B (680-103647-7), MW-9C (680-103647-8), MW-10A (680-103647-9), MW-10B (680-103647-10), MW-10C (680-103647-11), MW-11A (680-103647-12), MW-11B (680-103647-13), MW-11C (680-103647-14), DUP-1 (680-103647-15), Trip Blank (680-103647-16) and Equipment Blank (680-103647-17) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 07/29/2014 and 07/30/2014.

Samples MW-8A (680-103647-3)[10X], MW-8B (680-103647-4)[2X], MW-9A (680-103647-6)[5X], MW-10A (680-103647-9)[5X] and MW-11A (680-103647-12)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

The following sample was diluted due to color: MW-11A (680-103647-12). Elevated reporting limits (RL) are provided.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Sample Summary

Client: EHS Support, LLC Project/Site: Ashland Alterman

TestAmerica Job ID: 680-103647-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-103647-1	MW-3A	Water	07/22/14 12:58	07/25/14 09:30
680-103647-2	MW-3B	Water	07/22/14 13:37	07/25/14 09:30
680-103647-3	MW-8A	Water	07/23/14 16:10	07/25/14 09:30
680-103647-4	MW-8B	Water	07/23/14 15:25	07/25/14 09:30
680-103647-5	MW-8C	Water	07/23/14 17:35	07/25/14 09:30
680-103647-6	MW-9A	Water	07/23/14 14:35	07/25/14 09:30
680-103647-7	MW-9B	Water	07/23/14 15:12	07/25/14 09:30
680-103647-8	MW-9C	Water	07/23/14 13:50	07/25/14 09:30
680-103647-9	MW-10A	Water	07/23/14 11:35	07/25/14 09:30
680-103647-10	MW-10B	Water	07/23/14 12:13	07/25/14 09:30
680-103647-11	MW-10C	Water	07/23/14 13:00	07/25/14 09:30
680-103647-12	MW-11A	Water	07/22/14 15:45	07/25/14 09:30
680-103647-13	MW-11B	Water	07/22/14 12:13	07/25/14 09:30
680-103647-14	MW-11C	Water	07/22/14 15:05	07/25/14 09:30
680-103647-15	DUP-1	Water	07/23/14 00:00	07/25/14 09:30
680-103647-16	Trip Blank	Water	07/22/14 09:00	07/25/14 09:30
680-103647-17	Equipment Blank	Water	07/22/14 09:30	07/25/14 09:30

4

Ē

6

8

9

10

13

14

Method Summary

Client: EHS Support, LLC Project/Site: Ashland Alterman

TestAmerica Job ID: 680-103647-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

3

4

5

7

0

10

12

12

Definitions/Glossary

Client: EHS Support, LLC Project/Site: Ashland Alterman

TestAmerica Job ID: 680-103647-1

Glossary

TEQ

Toxicity Equivalent Quotient (Dioxin)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Client: EHS Support, LLC Project/Site: Ashland Alterman

					Lab	Sample ID:	680-103647-
Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
60		1.0		ug/L		8260B	Total/NA
1.1		1.0		ug/L	1	8260B	Total/NA
					Lab	Sample ID:	680-103647-
					Lab	Sample ID:	680-103647-
Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
12		10		ug/L		8260B	Total/NA
550		10		ug/L	10	8260B	Total/NA
32		10		ug/L	10	8260B	Total/NA
					Lab	Sample ID:	680-103647-
Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
190		2.0		ug/L		8260B	Total/NA
					Lab	Sample ID:	680-103647-
Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
18		10		ug/L		8260B	Total/NA
2.3		2.0		ug/L	1	8260B	Total/NA
1.3		1.0		ug/L	1	8260B	Total/NA
					Lab	Sample ID:	680-103647-
Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
8.5		5.0		ug/L		8260B	Total/NA
370		5.0		ug/L	5	8260B	Total/NA
7.3		5.0		ug/L	5	8260B	Total/NA
230		5.0		ug/L	5	8260B	Total/NA
					Lab	Sample ID:	680-103647-
					Lab	Sample ID:	680-103647-
Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
110		25		ug/L	1	8260B	Total/NA
					l ah	Sample ID:	680-103647-0
	Result 190 Result 13 1.3	Result Qualifier	Result Qualifier RL 10 10 10 10 10 10 10 1	Result Qualifier RL MDL	Result Qualifier RL MDL Unit Ug/L	Result Qualifier RL MDL Unit Uni	Columbia

This Detection Summary does not include radiochemical test results.

Analyte

Chloroform

cis-1,2-Dichloroethene

Tetrachloroethene

Trichloroethene

TestAmerica Savannah

Dil Fac D Method

8260B

8260B

8260B

8260B

5

5

5

RL

5.0

5.0

5.0

5.0

MDL Unit

ug/L

ug/L

ug/L

ug/L

Result Qualifier

14

41

480

82

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Client: EHS Support, LLC Project/Site: Ashland Alterman TestAmerica Job ID: 680-103647-1

Lab Sample ID: 680-103647-16

Lab Sample ID: 680-103647-17

Client Sample ID: MW-10B Lab Sample ID: 680-103647-10 Result Qualifier MDL Unit Dil Fac D Method Analyte RL Prep Type 1.0 cis-1,2-Dichloroethene 1.7 ug/L 8260B Total/NA Tetrachloroethene 76 1.0 ug/L 1 8260B Total/NA Trichloroethene 1.8 1.0 ug/L 8260B Total/NA Client Sample ID: MW-10C Lab Sample ID: 680-103647-11 Analyte Dil Fac D Method Result Qualifier RL MDL Unit Prep Type Tetrachloroethene 3.2 1.0 ug/L 8260B Total/NA Client Sample ID: MW-11A Lab Sample ID: 680-103647-12 No Detections. Client Sample ID: MW-11B Lab Sample ID: 680-103647-13 Result Qualifier MDL Unit Dil Fac D Method Analyte RL**Prep Type** Tetrachloroethene 19 1.0 8260B Total/NA ug/L 8260B Total/NA Trichloroethene 1.8 1.0 ug/L Client Sample ID: MW-11C Lab Sample ID: 680-103647-14 No Detections. Client Sample ID: DUP-1 Lab Sample ID: 680-103647-15 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Tetrachloroethene 150 1.0 8260B Total/NA ug/L

Client Sample ID: Equipment Blank No Detections.

No Detections.

Client Sample ID: Trip Blank

This Detection Summary does not include radiochemical test results.

Page 8 of 42

Client: EHS Support, LLC Project/Site: Ashland Alterman

Lab Sample ID: 680-103647-1

Matrix: Water

Client Sample ID: MW-3A Date Collected: 07/22/14 12:58 Date Received: 07/25/14 09:30

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0		1.0		ug/L			07/29/14 14:09	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			07/29/14 14:09	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			07/29/14 14:09	1
1,1-Dichloroethane	<1.0		1.0		ug/L			07/29/14 14:09	1
1,1-Dichloroethene	<1.0		1.0		ug/L			07/29/14 14:09	1
1,2-Dichloroethane	<1.0		1.0		ug/L			07/29/14 14:09	1
1,2-Dichloropropane	<1.0		1.0		ug/L			07/29/14 14:09	1
2-Butanone (MEK)	<10		10		ug/L			07/29/14 14:09	1
2-Hexanone	<10		10		ug/L			07/29/14 14:09	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			07/29/14 14:09	1
Acetone	<25		25		ug/L			07/29/14 14:09	1
Benzene	<1.0		1.0		ug/L			07/29/14 14:09	1
Bromoform	<1.0		1.0		ug/L			07/29/14 14:09	1
Bromomethane	<5.0		5.0		ug/L			07/29/14 14:09	1
Carbon disulfide	<2.0		2.0		ug/L			07/29/14 14:09	1
Carbon tetrachloride	<1.0		1.0		ug/L			07/29/14 14:09	1
Chlorobenzene	<1.0		1.0		ug/L			07/29/14 14:09	1
Chlorodibromomethane	<1.0		1.0		ug/L			07/29/14 14:09	1
Chloroethane	<5.0		5.0		ug/L			07/29/14 14:09	1
Chloroform	<1.0		1.0		ug/L			07/29/14 14:09	1
Chloromethane	<1.0		1.0		ug/L			07/29/14 14:09	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 14:09	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 14:09	1
Dichlorobromomethane	<1.0		1.0		ug/L			07/29/14 14:09	1
Ethylbenzene	<1.0		1.0		ug/L			07/29/14 14:09	1
Methylene Chloride	<5.0		5.0		ug/L			07/29/14 14:09	1
Styrene	<1.0		1.0		ug/L			07/29/14 14:09	1
Tetrachloroethene	60		1.0		ug/L			07/29/14 14:09	1
Toluene	<1.0		1.0		ug/L			07/29/14 14:09	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 14:09	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 14:09	1
Trichloroethene	1.1		1.0		ug/L			07/29/14 14:09	1
Vinyl chloride	<1.0		1.0		ug/L			07/29/14 14:09	1
Xylenes, Total	<2.0		2.0		ug/L			07/29/14 14:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93		70 - 130			-		07/29/14 14:09	1
Dibromofluoromethane	118		70 - 130					07/29/14 14:09	1

Surrogate	%Recovery	Qualifier	Limits	Prepa	ared /	Analyzed	Dil Fac
4-Bromofluorobenzene	93		70 - 130		07/	29/14 14:09	1
Dibromofluoromethane	118		70 - 130		07/	29/14 14:09	1
Toluene-d8 (Surr)	101		70 - 130		07/	29/14 14:09	1

Client Sample ID: MW-3B Lab Sample ID: 680-103647-2 Date Collected: 07/22/14 13:37 **Matrix: Water**

Date Received: 07/25/14 09:30

Method: 8260B - Volatile Organic Compounds (GC/MS)											
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac					
1,1,1-Trichloroethane	<1.0	1.0	ug/L		07/29/14 14:31	1					
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L		07/29/14 14:31	1					
1,1,2-Trichloroethane	<1.0	1.0	ug/L		07/29/14 14:31	1					
1,1-Dichloroethane	<1.0	1.0	ug/L		07/29/14 14:31	1					

TestAmerica Savannah

7/31/2014 Page 9 of 42

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: MW-3B

Lab Sample ID: 680-103647-2 Date Collected: 07/22/14 13:37 Matrix: Water

Date Received: 07/25/14 09:30

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	<1.0		1.0	ug/L			07/29/14 14:31	1
1,2-Dichloroethane	<1.0		1.0	ug/L			07/29/14 14:31	1
1,2-Dichloropropane	<1.0		1.0	ug/L			07/29/14 14:31	1
2-Butanone (MEK)	<10		10	ug/L			07/29/14 14:31	1
2-Hexanone	<10		10	ug/L			07/29/14 14:31	1
4-Methyl-2-pentanone (MIBK)	<10		10	ug/L			07/29/14 14:31	1
Acetone	<25		25	ug/L			07/29/14 14:31	1
Benzene	<1.0		1.0	ug/L			07/29/14 14:31	1
Bromoform	<1.0		1.0	ug/L			07/29/14 14:31	1
Bromomethane	<5.0		5.0	ug/L			07/29/14 14:31	1
Carbon disulfide	<2.0		2.0	ug/L			07/29/14 14:31	1
Carbon tetrachloride	<1.0		1.0	ug/L			07/29/14 14:31	1
Chlorobenzene	<1.0		1.0	ug/L			07/29/14 14:31	1
Chlorodibromomethane	<1.0		1.0	ug/L			07/29/14 14:31	1
Chloroethane	<5.0		5.0	ug/L			07/29/14 14:31	1
Chloroform	<1.0		1.0	ug/L			07/29/14 14:31	1
Chloromethane	<1.0		1.0	ug/L			07/29/14 14:31	1
cis-1,2-Dichloroethene	<1.0		1.0	ug/L			07/29/14 14:31	1
cis-1,3-Dichloropropene	<1.0		1.0	ug/L			07/29/14 14:31	1
Dichlorobromomethane	<1.0		1.0	ug/L			07/29/14 14:31	1
Ethylbenzene	<1.0		1.0	ug/L			07/29/14 14:31	1
Methylene Chloride	<5.0		5.0	ug/L			07/29/14 14:31	1
Styrene	<1.0		1.0	ug/L			07/29/14 14:31	1
Tetrachloroethene	<1.0		1.0	ug/L			07/29/14 14:31	1
Toluene	<1.0		1.0	ug/L			07/29/14 14:31	1
trans-1,2-Dichloroethene	<1.0		1.0	ug/L			07/29/14 14:31	1
trans-1,3-Dichloropropene	<1.0		1.0	ug/L			07/29/14 14:31	1
Trichloroethene	<1.0		1.0	ug/L			07/29/14 14:31	1
Vinyl chloride	<1.0		1.0	ug/L			07/29/14 14:31	1
Xylenes, Total	<2.0		2.0	ug/L			07/29/14 14:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		70 - 130				07/29/14 14:31	1
Dibromofluoromethane	118		70 - 130				07/29/14 14:31	1
Toluene-d8 (Surr)	100		70 - 130				07/29/14 14:31	1

Client Sample ID: MW-8A Lab Sample ID: 680-103647-3 Date Collected: 07/23/14 16:10 Matrix: Water

Date Received: 07/25/14 09:30

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<10	10	ug/L			07/29/14 14:52	10
1,1,2,2-Tetrachloroethane	<10	10	ug/L			07/29/14 14:52	10
1,1,2-Trichloroethane	<10	10	ug/L			07/29/14 14:52	10
1,1-Dichloroethane	<10	10	ug/L			07/29/14 14:52	10
1,1-Dichloroethene	<10	10	ug/L			07/29/14 14:52	10
1,2-Dichloroethane	<10	10	ug/L			07/29/14 14:52	10
1,2-Dichloropropane	<10	10	ug/L			07/29/14 14:52	10
2-Butanone (MEK)	<100	100	ug/L			07/29/14 14:52	10

TestAmerica Savannah

Page 10 of 42

Project/Site: Ashland Alterman

Client: EHS Support, LLC

Client Sample ID: MW-8A Lab Sample ID: 680-103647-3

Date Collected: 07/23/14 16:10

Date Received: 07/25/14 09:30

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) RL Analyte Result Qualifier MDL Unit D Dil Fac Prepared Analyzed 2-Hexanone <100 100 07/29/14 14:52 ug/L 10 <100 100 4-Methyl-2-pentanone (MIBK) ug/L 07/29/14 14:52 10 Acetone <250 250 ug/L 07/29/14 14:52 10 Benzene <10 10 ug/L 07/29/14 14:52 10 Bromoform <10 10 ug/L 07/29/14 14:52 10 Bromomethane <50 50 ug/L 07/29/14 14:52 10 Carbon disulfide <20 20 ug/L 07/29/14 14:52 10 Carbon tetrachloride <10 10 ug/L 07/29/14 14:52 10 Chlorobenzene <10 10 ug/L 07/29/14 14:52 10 Chlorodibromomethane 10 <10 ug/L 07/29/14 14:52 10 Chloroethane 50 <50 ug/L 07/29/14 14:52 10 Chloroform <10 10 ug/L 07/29/14 14:52 10 Chloromethane <10 10 ug/L 07/29/14 14:52 10 cis-1,2-Dichloroethene 12 10 ug/L 07/29/14 14:52 10 10 cis-1,3-Dichloropropene <10 ug/L 07/29/14 14:52 10 Dichlorobromomethane <10 10 ug/L 07/29/14 14:52 10 <10 10 07/29/14 14:52 Ethylbenzene ug/L 10 Methylene Chloride <50 50 ug/L 07/29/14 14:52 10 <10 10 ug/L 07/29/14 14:52 10 Styrene 10 Tetrachloroethene 550 ug/L 07/29/14 14:52 10 Toluene <10 10 ug/L 07/29/14 14:52 10 ug/L trans-1,2-Dichloroethene <10 10 07/29/14 14:52 10 trans-1,3-Dichloropropene <10 10 ug/L 07/29/14 14:52 10 **Trichloroethene** 32 10 ug/L 07/29/14 14:52 10 Vinyl chloride <10 10 ug/L 07/29/14 14:52 10 <20 20 ug/L 07/29/14 14:52 Xylenes, Total 10

Surrogate	%Recovery C	Quaimer	Limits	Prepared	Analyzea	DII Fac
4-Bromofluorobenzene	98		70 - 130		07/29/14 14:52	10
Dibromofluoromethane	111		70 - 130		07/29/14 14:52	10
Toluene-d8 (Surr)	100		70 - 130		07/29/14 14:52	10

Client Sample ID: MW-8B

Date Collected: 07/23/14 15:25

Lab Sample ID: 680-103647-4

Matrix: Water

Date Received: 07/25/14 09:30

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<2.0	2.0	ug/L		07/29/14 15:13	2
1,1,2,2-Tetrachloroethane	<2.0	2.0	ug/L		07/29/14 15:13	2
1,1,2-Trichloroethane	<2.0	2.0	ug/L		07/29/14 15:13	2
1,1-Dichloroethane	<2.0	2.0	ug/L		07/29/14 15:13	2
1,1-Dichloroethene	<2.0	2.0	ug/L		07/29/14 15:13	2
1,2-Dichloroethane	<2.0	2.0	ug/L		07/29/14 15:13	2
1,2-Dichloropropane	<2.0	2.0	ug/L		07/29/14 15:13	2
2-Butanone (MEK)	<20	20	ug/L		07/29/14 15:13	2
2-Hexanone	<20	20	ug/L		07/29/14 15:13	2
4-Methyl-2-pentanone (MIBK)	<20	20	ug/L		07/29/14 15:13	2
Acetone	<50	50	ug/L		07/29/14 15:13	2
Benzene	<2.0	2.0	ug/L		07/29/14 15:13	2

TestAmerica Savannah

Page 11 of 42

7/31/2014

3

4

6

8

10

11

13

Project/Site: Ashland Alterman

Client: EHS Support, LLC

Client Sample ID: MW-8B Lab Sample ID: 680-103647-4

Date Collected: 07/23/14 15:25 Matrix: Water Date Received: 07/25/14 09:30

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Bromoform	<2.0	2.0	ug/L		07/29/14 15:13	2
Bromomethane	<10	10	ug/L		07/29/14 15:13	2
Carbon disulfide	<4.0	4.0	ug/L		07/29/14 15:13	2
Carbon tetrachloride	<2.0	2.0	ug/L		07/29/14 15:13	2
Chlorobenzene	<2.0	2.0	ug/L		07/29/14 15:13	2
Chlorodibromomethane	<2.0	2.0	ug/L		07/29/14 15:13	2
Chloroethane	<10	10	ug/L		07/29/14 15:13	2
Chloroform	<2.0	2.0	ug/L		07/29/14 15:13	2
Chloromethane	<2.0	2.0	ug/L		07/29/14 15:13	2
cis-1,2-Dichloroethene	<2.0	2.0	ug/L		07/29/14 15:13	2
cis-1,3-Dichloropropene	<2.0	2.0	ug/L		07/29/14 15:13	2
Dichlorobromomethane	<2.0	2.0	ug/L		07/29/14 15:13	2
Ethylbenzene	<2.0	2.0	ug/L		07/29/14 15:13	2
Methylene Chloride	<10	10	ug/L		07/29/14 15:13	2
Styrene	<2.0	2.0	ug/L		07/29/14 15:13	2
Tetrachloroethene	190	2.0	ug/L		07/29/14 15:13	2
Toluene	<2.0	2.0	ug/L		07/29/14 15:13	2
trans-1,2-Dichloroethene	<2.0	2.0	ug/L		07/29/14 15:13	2
trans-1,3-Dichloropropene	<2.0	2.0	ug/L		07/29/14 15:13	2
Trichloroethene	<2.0	2.0	ug/L		07/29/14 15:13	2
Vinyl chloride	<2.0	2.0	ug/L		07/29/14 15:13	2
Xylenes, Total	<4.0	4.0	ug/L		07/29/14 15:13	2
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac

Client Sample ID: MW-8C Lab Sample ID: 680-103647-5 Date Collected: 07/23/14 17:35 **Matrix: Water**

70 - 130

70 - 130

70 - 130

99

107

103

Date Received: 07/25/14 09:30

4-Bromofluorobenzene

Dibromofluoromethane

Toluene-d8 (Surr)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0	1.0	ug/L			07/29/14 15:35	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L			07/29/14 15:35	1
1,1,2-Trichloroethane	<1.0	1.0	ug/L			07/29/14 15:35	1
1,1-Dichloroethane	<1.0	1.0	ug/L			07/29/14 15:35	1
1,1-Dichloroethene	<1.0	1.0	ug/L			07/29/14 15:35	1
1,2-Dichloroethane	<1.0	1.0	ug/L			07/29/14 15:35	1
1,2-Dichloropropane	<1.0	1.0	ug/L			07/29/14 15:35	1
2-Butanone (MEK)	18	10	ug/L			07/29/14 15:35	1
2-Hexanone	<10	10	ug/L			07/29/14 15:35	1
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L			07/29/14 15:35	1
Acetone	<25	25	ug/L			07/29/14 15:35	1
Benzene	<1.0	1.0	ug/L			07/29/14 15:35	1
Bromoform	<1.0	1.0	ug/L			07/29/14 15:35	1
Bromomethane	<5.0	5.0	ug/L			07/29/14 15:35	1
Carbon disulfide	2.3	2.0	ug/L			07/29/14 15:35	1
Carbon tetrachloride	<1.0	1.0	ug/L			07/29/14 15:35	1

TestAmerica Savannah

07/29/14 15:13

07/29/14 15:13

07/29/14 15:13

Page 12 of 42

2

Project/Site: Ashland Alterman

Client: EHS Support, LLC

Client Sample ID: MW-8C Lab Sample ID: 680-103647-5

Matrix: Water

Date Collected: 07/23/14 17:35 Date Received: 07/25/14 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	<1.0		1.0		ug/L			07/29/14 15:35	1
Chlorodibromomethane	<1.0		1.0		ug/L			07/29/14 15:35	1
Chloroethane	<5.0		5.0		ug/L			07/29/14 15:35	1
Chloroform	<1.0		1.0		ug/L			07/29/14 15:35	1
Chloromethane	1.3		1.0		ug/L			07/29/14 15:35	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 15:35	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 15:35	1
Dichlorobromomethane	<1.0		1.0		ug/L			07/29/14 15:35	1
Ethylbenzene	<1.0		1.0		ug/L			07/29/14 15:35	1
Methylene Chloride	<5.0		5.0		ug/L			07/29/14 15:35	1
Styrene	<1.0		1.0		ug/L			07/29/14 15:35	1
Tetrachloroethene	<1.0		1.0		ug/L			07/29/14 15:35	1
Toluene	<1.0		1.0		ug/L			07/29/14 15:35	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 15:35	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 15:35	1
Trichloroethene	<1.0		1.0		ug/L			07/29/14 15:35	1
Vinyl chloride	<1.0		1.0		ug/L			07/29/14 15:35	1
Xylenes, Total	<2.0		2.0		ug/L			07/29/14 15:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95		70 - 130			-		07/29/14 15:35	1
Dibromofluoromethane	118		70 - 130					07/29/14 15:35	1
Toluene-d8 (Surr)	101		70 - 130					07/29/14 15:35	1

Client Sample ID: MW-9A Lab Sample ID: 680-103647-6

Date Collected: 07/23/14 14:35 **Matrix: Water** Date Received: 07/25/14 09:30

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<5.0	5.0	ug/L		07/30/14 12:24	5
1,1,2,2-Tetrachloroethane	<5.0	5.0	ug/L		07/30/14 12:24	5
1,1,2-Trichloroethane	<5.0	5.0	ug/L		07/30/14 12:24	5
1,1-Dichloroethane	<5.0	5.0	ug/L		07/30/14 12:24	5
1,1-Dichloroethene	<5.0	5.0	ug/L		07/30/14 12:24	5
1,2-Dichloroethane	<5.0	5.0	ug/L		07/30/14 12:24	5
1,2-Dichloropropane	<5.0	5.0	ug/L		07/30/14 12:24	5
2-Butanone (MEK)	<50	50	ug/L		07/30/14 12:24	5
2-Hexanone	<50	50	ug/L		07/30/14 12:24	5
4-Methyl-2-pentanone (MIBK)	<50	50	ug/L		07/30/14 12:24	5
Acetone	<130	130	ug/L		07/30/14 12:24	5
Benzene	<5.0	5.0	ug/L		07/30/14 12:24	5
Bromoform	<5.0	5.0	ug/L		07/30/14 12:24	5
Bromomethane	<25	25	ug/L		07/30/14 12:24	5
Carbon disulfide	<10	10	ug/L		07/30/14 12:24	5
Carbon tetrachloride	<5.0	5.0	ug/L		07/30/14 12:24	5
Chlorobenzene	<5.0	5.0	ug/L		07/30/14 12:24	5
Chlorodibromomethane	<5.0	5.0	ug/L		07/30/14 12:24	5
Chloroethane	<25	25	ug/L		07/30/14 12:24	5
Chloroform	<5.0	5.0	ug/L		07/30/14 12:24	5

TestAmerica Savannah

Page 13 of 42

Client: EHS Support, LLC Project/Site: Ashland Alterman

Date Received: 07/25/14 09:30

Client Sample ID: MW-9A

Lab Sample ID: 680-103647-6 Date Collected: 07/23/14 14:35 Matrix: Water

Date Received: 07/25/14 09:30

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	<5.0		5.0		ug/L			07/30/14 12:24	5
cis-1,2-Dichloroethene	8.5		5.0		ug/L			07/30/14 12:24	5
cis-1,3-Dichloropropene	<5.0		5.0		ug/L			07/30/14 12:24	5
Dichlorobromomethane	<5.0		5.0		ug/L			07/30/14 12:24	5
Ethylbenzene	<5.0		5.0		ug/L			07/30/14 12:24	5
Methylene Chloride	<25		25		ug/L			07/30/14 12:24	5
Styrene	<5.0		5.0		ug/L			07/30/14 12:24	5
Tetrachloroethene	370		5.0		ug/L			07/30/14 12:24	5
Toluene	<5.0		5.0		ug/L			07/30/14 12:24	5
trans-1,2-Dichloroethene	7.3		5.0		ug/L			07/30/14 12:24	5
trans-1,3-Dichloropropene	<5.0		5.0		ug/L			07/30/14 12:24	5
Trichloroethene	230		5.0		ug/L			07/30/14 12:24	5
Vinyl chloride	<5.0		5.0		ug/L			07/30/14 12:24	5
Xylenes, Total	<10		10		ug/L			07/30/14 12:24	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		70 - 130			-		07/30/14 12:24	5
Dibromofluoromethane	110		70 - 130					07/30/14 12:24	5
Toluene-d8 (Surr)	102		70 - 130					07/30/14 12:24	5

Client Sample ID: MW-9B Lab Sample ID: 680-103647-7

Date Collected: 07/23/14 15:12 Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed 1,1,1-Trichloroethane <1.0 1.0 ug/L 07/29/14 16:18 1,1,2,2-Tetrachloroethane <1.0 1.0 ug/L 07/29/14 16:18 1.1.2-Trichloroethane <1.0 1.0 ug/L 07/29/14 16:18 1,1-Dichloroethane <1.0 1.0 ug/L 07/29/14 16:18 1,1-Dichloroethene 07/29/14 16:18 <1.0 1.0 ug/L 1,2-Dichloroethane <1.0 1.0 ug/L 07/29/14 16:18 1,2-Dichloropropane 1.0 ug/L 07/29/14 16:18 <1.0 2-Butanone (MEK) <10 10 ug/L 07/29/14 16:18 ug/L 2-Hexanone <10 10 07/29/14 16:18 4-Methyl-2-pentanone (MIBK) <10 10 ug/L 07/29/14 16:18 Acetone <25 25 ug/L 07/29/14 16:18 Benzene <1.0 1.0 ug/L 07/29/14 16:18 Bromoform <1.0 1.0 ug/L 07/29/14 16:18 Bromomethane <5.0 5.0 ug/L 07/29/14 16:18 Carbon disulfide <2.0 2.0 ug/L 07/29/14 16:18 Carbon tetrachloride <1.0 1.0 ug/L 07/29/14 16:18 Chlorobenzene <1.0 1.0 ug/L 07/29/14 16:18 Chlorodibromomethane <1.0 1.0 ug/L 07/29/14 16:18 Chloroethane 5.0 <5.0 ug/L 07/29/14 16:18 Chloroform 1.0 ug/L <1.0 07/29/14 16:18 Chloromethane <1.0 1.0 ug/L 07/29/14 16:18 cis-1,2-Dichloroethene <1.0 1.0 ug/L 07/29/14 16:18 cis-1,3-Dichloropropene <1.0 1.0 ug/L 07/29/14 16:18 Dichlorobromomethane <1.0 1.0 ug/L 07/29/14 16:18

TestAmerica Savannah

Page 14 of 42

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: MW-9B Lab Sample ID: 680-103647-7

Date Collected: 07/23/14 15:12 Matrix: Water

Date Received: 07/25/14 09:30

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	<1.0	1.0	ug/L			07/29/14 16:18	1
Methylene Chloride	<5.0	5.0	ug/L			07/29/14 16:18	1
Styrene	<1.0	1.0	ug/L			07/29/14 16:18	1
Tetrachloroethene	<1.0	1.0	ug/L			07/29/14 16:18	1
Toluene	<1.0	1.0	ug/L			07/29/14 16:18	1
trans-1,2-Dichloroethene	<1.0	1.0	ug/L			07/29/14 16:18	1
trans-1,3-Dichloropropene	<1.0	1.0	ug/L			07/29/14 16:18	1
Trichloroethene	<1.0	1.0	ug/L			07/29/14 16:18	1
Vinyl chloride	<1.0	1.0	ug/L			07/29/14 16:18	1
Xylenes, Total	<2.0	2.0	ug/L			07/29/14 16:18	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac

 4-Bromofluorobenzene
 94
 70 - 130
 07/29/14 16:18
 1

 Dibromofluoromethane
 117
 70 - 130
 07/29/14 16:18
 1

 Toluene-d8 (Surr)
 100
 70 - 130
 07/29/14 16:18
 1

Client Sample ID: MW-9C

Date Collected: 07/23/14 13:50

Lab Sample ID: 680-103647-8

Matrix: Water

Date Received: 07/25/14 09:30

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0	1.0	ug/L		07/29/14 16:39	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L		07/29/14 16:39	1
1,1,2-Trichloroethane	<1.0	1.0	ug/L		07/29/14 16:39	1
1,1-Dichloroethane	<1.0	1.0	ug/L		07/29/14 16:39	1
1,1-Dichloroethene	<1.0	1.0	ug/L		07/29/14 16:39	1
1,2-Dichloroethane	<1.0	1.0	ug/L		07/29/14 16:39	1
1,2-Dichloropropane	<1.0	1.0	ug/L		07/29/14 16:39	1
2-Butanone (MEK)	<10	10	ug/L		07/29/14 16:39	1
2-Hexanone	<10	10	ug/L		07/29/14 16:39	1
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L		07/29/14 16:39	1
Acetone	110	25	ug/L		07/29/14 16:39	1
Benzene	<1.0	1.0	ug/L		07/29/14 16:39	1
Bromoform	<1.0	1.0	ug/L		07/29/14 16:39	1
Bromomethane	<5.0	5.0	ug/L		07/29/14 16:39	1
Carbon disulfide	<2.0	2.0	ug/L		07/29/14 16:39	1
Carbon tetrachloride	<1.0	1.0	ug/L		07/29/14 16:39	1
Chlorobenzene	<1.0	1.0	ug/L		07/29/14 16:39	1
Chlorodibromomethane	<1.0	1.0	ug/L		07/29/14 16:39	1
Chloroethane	<5.0	5.0	ug/L		07/29/14 16:39	1
Chloroform	<1.0	1.0	ug/L		07/29/14 16:39	1
Chloromethane	<1.0	1.0	ug/L		07/29/14 16:39	1
cis-1,2-Dichloroethene	<1.0	1.0	ug/L		07/29/14 16:39	1
cis-1,3-Dichloropropene	<1.0	1.0	ug/L		07/29/14 16:39	1
Dichlorobromomethane	<1.0	1.0	ug/L		07/29/14 16:39	1
Ethylbenzene	<1.0	1.0	ug/L		07/29/14 16:39	1
Methylene Chloride	<5.0	5.0	ug/L		07/29/14 16:39	1
Styrene	<1.0	1.0	ug/L		07/29/14 16:39	1
Tetrachloroethene	<1.0	1.0	ug/L		07/29/14 16:39	1

TestAmerica Savannah

Page 15 of 42

2

3

5

Ω

9

11

13

Client Sample Results

Client: EHS Support, LLC Project/Site: Ashland Alterman

Dibromofluoromethane

Toluene-d8 (Surr)

TestAmerica Job ID: 680-103647-1

07/29/14 16:39

07/29/14 16:39

Client Sample ID: MW-9C Lab Sample ID: 680-103647-8

Date Collected: 07/23/14 13:50 Matrix: Water Date Received: 07/25/14 09:30

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Toluene <1.0 1.0 ug/L 07/29/14 16:39 trans-1,2-Dichloroethene ug/L 07/29/14 16:39 <1.0 1.0 trans-1,3-Dichloropropene <1.0 1.0 ug/L 07/29/14 16:39 Trichloroethene <1.0 1.0 ug/L 07/29/14 16:39 ug/L Vinyl chloride <1.0 1.0 07/29/14 16:39 2.0 ug/L Xylenes, Total <2.0 07/29/14 16:39 Qualifier Surrogate %Recovery Limits Prepared Analyzed Dil Fac 70 - 130 4-Bromofluorobenzene 94 07/29/14 16:39

Client Sample ID: MW-10A Lab Sample ID: 680-103647-9

70 - 130

70 - 130

118

100

Date Collected: 07/23/14 11:35

Matrix: Water Date Received: 07/25/14 09:30

Analyte	Result Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
1,1,2,2-Tetrachloroethane	<5.0	5.0	uç	ıg/L			07/29/14 17:01	5
1,1,2-Trichloroethane	<5.0	5.0	uç	ıg/L			07/29/14 17:01	5
1,1-Dichloroethane	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
1,1-Dichloroethene	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
1,2-Dichloroethane	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
1,2-Dichloropropane	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
2-Butanone (MEK)	<50	50	u	ıg/L			07/29/14 17:01	5
2-Hexanone	<50	50	u	ıg/L			07/29/14 17:01	5
4-Methyl-2-pentanone (MIBK)	<50	50	u	ıg/L			07/29/14 17:01	5
Acetone	<130	130	u	ıg/L			07/29/14 17:01	5
Benzene	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
Bromoform	<5.0	5.0	uį	ıg/L			07/29/14 17:01	5
Bromomethane	<25	25	u	ıg/L			07/29/14 17:01	5
Carbon disulfide	<10	10	u	ıg/L			07/29/14 17:01	5
Carbon tetrachloride	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
Chlorobenzene	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
Chlorodibromomethane	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
Chloroethane	<25	25	u	ıg/L			07/29/14 17:01	5
Chloroform	14	5.0	u	ıg/L			07/29/14 17:01	5
Chloromethane	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
cis-1,2-Dichloroethene	41	5.0	u	ıg/L			07/29/14 17:01	5
cis-1,3-Dichloropropene	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
Dichlorobromomethane	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
Ethylbenzene	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
Methylene Chloride	<25	25	u	ıg/L			07/29/14 17:01	5
Styrene	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
Tetrachloroethene	480	5.0	u	ıg/L			07/29/14 17:01	5
Toluene	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
trans-1,2-Dichloroethene	<5.0	5.0	uç	ıg/L			07/29/14 17:01	5
trans-1,3-Dichloropropene	<5.0	5.0	u	ıg/L			07/29/14 17:01	5
Trichloroethene	82	5.0	ug	ıg/L			07/29/14 17:01	5

TestAmerica Savannah

Client Sample Results

Client: EHS Support, LLC Project/Site: Ashland Alterman TestAmerica Job ID: 680-103647-1

Lab Sample ID: 680-103647-9

Matrix: Water

Client Sample ID: MW-10A Date Collected: 07/23/14 11:35

Date Received: 07/25/14 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	<5.0		5.0		ug/L			07/29/14 17:01	5
Xylenes, Total	<10		10		ug/L			07/29/14 17:01	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		70 - 130			-		07/29/14 17:01	5
Dibromofluoromethane	111		70 - 130					07/29/14 17:01	5
Toluene-d8 (Surr)	102		70 - 130					07/29/14 17:01	5

Client Sample ID: MW-10B

Date Collected: 07/23/14 12:13

Date Received: 07/25/14 09:30

Lab	Sample	:טו	680-1	03647	-10

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil
	1,1,1-Trichloroethane	<1.0		1.0		ug/L			07/29/14 17:23	
	1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			07/29/14 17:23	
	1,1,2-Trichloroethane	<1.0		1.0		ug/L			07/29/14 17:23	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0		1.0		ug/L			07/29/14 17:23	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			07/29/14 17:23	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			07/29/14 17:23	1
1,1-Dichloroethane	<1.0		1.0		ug/L			07/29/14 17:23	1
1,1-Dichloroethene	<1.0		1.0		ug/L			07/29/14 17:23	1
1,2-Dichloroethane	<1.0		1.0		ug/L			07/29/14 17:23	1
1,2-Dichloropropane	<1.0		1.0		ug/L			07/29/14 17:23	1
2-Butanone (MEK)	<10		10		ug/L			07/29/14 17:23	1
2-Hexanone	<10		10		ug/L			07/29/14 17:23	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			07/29/14 17:23	1
Acetone	<25		25		ug/L			07/29/14 17:23	1
Benzene	<1.0		1.0		ug/L			07/29/14 17:23	1
Bromoform	<1.0		1.0		ug/L			07/29/14 17:23	1
Bromomethane	<5.0		5.0		ug/L			07/29/14 17:23	1
Carbon disulfide	<2.0		2.0		ug/L			07/29/14 17:23	1
Carbon tetrachloride	<1.0		1.0		ug/L			07/29/14 17:23	1
Chlorobenzene	<1.0		1.0		ug/L			07/29/14 17:23	1
Chlorodibromomethane	<1.0		1.0		ug/L			07/29/14 17:23	1
Chloroethane	<5.0		5.0		ug/L			07/29/14 17:23	1
Chloroform	<1.0		1.0		ug/L			07/29/14 17:23	1
Chloromethane	<1.0		1.0		ug/L			07/29/14 17:23	1
cis-1,2-Dichloroethene	1.7		1.0		ug/L			07/29/14 17:23	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 17:23	1
Dichlorobromomethane	<1.0		1.0		ug/L			07/29/14 17:23	1
Ethylbenzene	<1.0		1.0		ug/L			07/29/14 17:23	1
Methylene Chloride	<5.0		5.0		ug/L			07/29/14 17:23	1
Styrene	<1.0		1.0		ug/L			07/29/14 17:23	1
Tetrachloroethene	76		1.0		ug/L			07/29/14 17:23	1
Toluene	<1.0		1.0		ug/L			07/29/14 17:23	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 17:23	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 17:23	1
Trichloroethene	1.8		1.0		ug/L			07/29/14 17:23	1
Vinyl chloride	<1.0		1.0		ug/L			07/29/14 17:23	1
Xylenes, Total	<2.0		2.0		ug/L			07/29/14 17:23	1

TestAmerica Savannah

Client Sample Results

Client: EHS Support, LLC Project/Site: Ashland Alterman

TestAmerica Job ID: 680-103647-1

Lab Sample ID: 680-103647-10

Matrix: Water

Client Sample ID: MW-10B Date Collected: 07/23/14 12:13

Date Received: 07/25/14 09:30

Surrogate	%Recovery	Qualifier Limits	Prepared Anal	yzed Dil Fac
4-Bromofluorobenzene	95	70 - 130	07/29/1	4 17:23
Dibromofluoromethane	117	70 - 130	07/29/1	4 17:23 1
Toluene-d8 (Surr)	100	70 - 130	07/29/1	4 17:23 1

Client Sample ID: MW-10C Lab Sample ID: 680-103647-11

Date Collected: 07/23/14 13:00 Matrix: Water

Date Received: 07/25/14 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0		1.0		ug/L			07/29/14 17:44	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			07/29/14 17:44	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			07/29/14 17:44	1
1,1-Dichloroethane	<1.0		1.0		ug/L			07/29/14 17:44	1
1,1-Dichloroethene	<1.0		1.0		ug/L			07/29/14 17:44	1
1,2-Dichloroethane	<1.0		1.0		ug/L			07/29/14 17:44	1
1,2-Dichloropropane	<1.0		1.0		ug/L			07/29/14 17:44	1
2-Butanone (MEK)	<10		10		ug/L			07/29/14 17:44	1
2-Hexanone	<10		10		ug/L			07/29/14 17:44	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			07/29/14 17:44	1
Acetone	<25		25		ug/L			07/29/14 17:44	1
Benzene	<1.0		1.0		ug/L			07/29/14 17:44	1
Bromoform	<1.0		1.0		ug/L			07/29/14 17:44	1
Bromomethane	<5.0		5.0		ug/L			07/29/14 17:44	1
Carbon disulfide	<2.0		2.0		ug/L			07/29/14 17:44	1
Carbon tetrachloride	<1.0		1.0		ug/L			07/29/14 17:44	1
Chlorobenzene	<1.0		1.0		ug/L			07/29/14 17:44	1
Chlorodibromomethane	<1.0		1.0		ug/L			07/29/14 17:44	1
Chloroethane	<5.0		5.0		ug/L			07/29/14 17:44	1
Chloroform	<1.0		1.0		ug/L			07/29/14 17:44	1
Chloromethane	<1.0		1.0		ug/L			07/29/14 17:44	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 17:44	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 17:44	1
Dichlorobromomethane	<1.0		1.0		ug/L			07/29/14 17:44	1
Ethylbenzene	<1.0		1.0		ug/L			07/29/14 17:44	1
Methylene Chloride	<5.0		5.0		ug/L			07/29/14 17:44	1
Styrene	<1.0		1.0		ug/L			07/29/14 17:44	1
Tetrachloroethene	3.2		1.0		ug/L			07/29/14 17:44	1
Toluene	<1.0		1.0		ug/L			07/29/14 17:44	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 17:44	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 17:44	1
Trichloroethene	<1.0		1.0		ug/L			07/29/14 17:44	1
Vinyl chloride	<1.0		1.0		ug/L			07/29/14 17:44	1
Xylenes, Total	<2.0		2.0		ug/L			07/29/14 17:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95		70 - 130			-		07/29/14 17:44	1
Dibromofluoromethane	116		70 - 130					07/29/14 17:44	1
Toluene-d8 (Surr)	101		70 - 130					07/29/14 17:44	1

TestAmerica Savannah

3

4

6

7

8

9

11

14

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: MW-11A Lab Sample ID: 680-103647-12

Date Collected: 07/22/14 15:45 Matrix: Water

Date Received: 07/25/14 09:30

Method: 8260B - Volatile Orga Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<5.0	5.0	ug/L		07/30/14 12:45	5
1,1,2,2-Tetrachloroethane	<5.0	5.0	ug/L		07/30/14 12:45	5
1,1,2-Trichloroethane	<5.0	5.0	ug/L		07/30/14 12:45	5
1,1-Dichloroethane	<5.0	5.0	ug/L		07/30/14 12:45	5
1,1-Dichloroethene	<5.0	5.0	ug/L		07/30/14 12:45	5
1,2-Dichloroethane	<5.0	5.0	ug/L		07/30/14 12:45	5
1,2-Dichloropropane	<5.0	5.0	ug/L		07/30/14 12:45	5
2-Butanone (MEK)	<50	50	ug/L		07/30/14 12:45	5
2-Hexanone	<50	50	ug/L		07/30/14 12:45	5
4-Methyl-2-pentanone (MIBK)	<50	50	ug/L		07/30/14 12:45	5
Acetone	<130	130	ug/L		07/30/14 12:45	5
Benzene	<5.0	5.0	ug/L		07/30/14 12:45	5
Bromoform	<5.0	5.0	ug/L		07/30/14 12:45	5
Bromomethane	<25	25	ug/L		07/30/14 12:45	5
Carbon disulfide	<10	10	ug/L		07/30/14 12:45	5
Carbon tetrachloride	<5.0	5.0	ug/L		07/30/14 12:45	5
Chlorobenzene	<5.0	5.0	ug/L		07/30/14 12:45	5
Chlorodibromomethane	<5.0	5.0	ug/L		07/30/14 12:45	5
Chloroethane	<25	25	ug/L		07/30/14 12:45	5
Chloroform	<5.0	5.0	ug/L		07/30/14 12:45	5
Chloromethane	<5.0	5.0	ug/L		07/30/14 12:45	5
cis-1,2-Dichloroethene	<5.0	5.0	ug/L		07/30/14 12:45	5
cis-1,3-Dichloropropene	<5.0	5.0	ug/L		07/30/14 12:45	5
Dichlorobromomethane	<5.0	5.0	ug/L		07/30/14 12:45	5
Ethylbenzene	<5.0	5.0	ug/L		07/30/14 12:45	5
Methylene Chloride	<25	25	ug/L		07/30/14 12:45	5
Styrene	<5.0	5.0	ug/L		07/30/14 12:45	5
Tetrachloroethene	<5.0	5.0	ug/L		07/30/14 12:45	5
Toluene	<5.0	5.0	ug/L		07/30/14 12:45	5
trans-1,2-Dichloroethene	<5.0	5.0	ug/L		07/30/14 12:45	5
trans-1,3-Dichloropropene	<5.0	5.0	ug/L		07/30/14 12:45	5
Trichloroethene	<5.0	5.0	ug/L		07/30/14 12:45	5
Vinyl chloride	<5.0	5.0	ug/L		07/30/14 12:45	5
Xylenes, Total	<10	10	ug/L		07/30/14 12:45	5
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99	70 - 130			07/30/14 12:45	5
Dibromofluoromethane	109	70 - 130			07/30/14 12:45	5
Toluene-d8 (Surr)	103	70 - 130			07/30/14 12:45	5

Client Sample ID: MW-11B Lab Sample ID: 680-103647-13

Date Collected: 07/22/14 12:13 Date Received: 07/25/14 09:30

Method: 8260B - Volatile Organic Compounds (GC/MS)										
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac				
1,1,1-Trichloroethane	<1.0	1.0	ug/L		07/30/14 13:07	1				
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L		07/30/14 13:07	1				
1,1,2-Trichloroethane	<1.0	1.0	ug/L		07/30/14 13:07	1				
1,1-Dichloroethane	<1.0	1.0	ug/L		07/30/14 13:07	1				

7/31/2014

Matrix: Water

Page 19 of 42

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: MW-11B

Date Collected: 07/22/14 12:13 Date Received: 07/25/14 09:30 Lab Sample ID: 680-103647-13

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	<1.0		1.0		ug/L			07/30/14 13:07	1
1,2-Dichloroethane	<1.0		1.0		ug/L			07/30/14 13:07	1
1,2-Dichloropropane	<1.0		1.0		ug/L			07/30/14 13:07	1
2-Butanone (MEK)	<10		10		ug/L			07/30/14 13:07	1
2-Hexanone	<10		10		ug/L			07/30/14 13:07	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			07/30/14 13:07	1
Acetone	<25		25		ug/L			07/30/14 13:07	1
Benzene	<1.0		1.0		ug/L			07/30/14 13:07	1
Bromoform	<1.0		1.0		ug/L			07/30/14 13:07	1
Bromomethane	<5.0		5.0		ug/L			07/30/14 13:07	1
Carbon disulfide	<2.0		2.0		ug/L			07/30/14 13:07	1
Carbon tetrachloride	<1.0		1.0		ug/L			07/30/14 13:07	1
Chlorobenzene	<1.0		1.0		ug/L			07/30/14 13:07	1
Chlorodibromomethane	<1.0		1.0		ug/L			07/30/14 13:07	1
Chloroethane	<5.0		5.0		ug/L			07/30/14 13:07	1
Chloroform	<1.0		1.0		ug/L			07/30/14 13:07	1
Chloromethane	<1.0		1.0		ug/L			07/30/14 13:07	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			07/30/14 13:07	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			07/30/14 13:07	1
Dichlorobromomethane	<1.0		1.0		ug/L			07/30/14 13:07	1
Ethylbenzene	<1.0		1.0		ug/L			07/30/14 13:07	1
Methylene Chloride	<5.0		5.0		ug/L			07/30/14 13:07	1
Styrene	<1.0		1.0		ug/L			07/30/14 13:07	1
Tetrachloroethene	19		1.0		ug/L			07/30/14 13:07	1
Toluene	<1.0		1.0		ug/L			07/30/14 13:07	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			07/30/14 13:07	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			07/30/14 13:07	1
Trichloroethene	1.8		1.0		ug/L			07/30/14 13:07	1
Vinyl chloride	<1.0		1.0		ug/L			07/30/14 13:07	1
Xylenes, Total	<2.0		2.0		ug/L			07/30/14 13:07	1
Surrogate	%Recovery	Qualifier Limit	-				Prepared	Analyzed	Dil Fac

 4-Bromofluorobenzene
 95
 70 - 130
 07/30/14 13:07
 1

 Dibromofluoromethane
 116
 70 - 130
 07/30/14 13:07
 1

 Toluene-d8 (Surr)
 100
 70 - 130
 07/30/14 13:07
 1

Date Collected: 07/22/14 15:05 Date Received: 07/25/14 09:30

Client Sample ID: MW-11C

Lab Sample ID: 680-103647-14

Matrix: Water

Analyte	Result Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0	1.0		ug/L			07/29/14 18:49	1
1,1,2,2-Tetrachloroethane	<1.0	1.0		ug/L			07/29/14 18:49	1
1,1,2-Trichloroethane	<1.0	1.0		ug/L			07/29/14 18:49	1
1,1-Dichloroethane	<1.0	1.0		ug/L			07/29/14 18:49	1
1,1-Dichloroethene	<1.0	1.0		ug/L			07/29/14 18:49	1
1,2-Dichloroethane	<1.0	1.0		ug/L			07/29/14 18:49	1
1,2-Dichloropropane	<1.0	1.0		ug/L			07/29/14 18:49	1
2-Butanone (MEK)	<10	10		ug/L			07/29/14 18:49	1

TestAmerica Savannah

Page 20 of 42

2

Л

J

8

40

11

13

14

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: MW-11C

Date Collected: 07/22/14 15:05 Date Received: 07/25/14 09:30

Lab Sample ID: 680-103647-14

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Hexanone	<10		10		ug/L			07/29/14 18:49	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			07/29/14 18:49	1
Acetone	<25		25		ug/L			07/29/14 18:49	1
Benzene	<1.0		1.0		ug/L			07/29/14 18:49	1
Bromoform	<1.0		1.0		ug/L			07/29/14 18:49	1
Bromomethane	<5.0		5.0		ug/L			07/29/14 18:49	1
Carbon disulfide	<2.0		2.0		ug/L			07/29/14 18:49	1
Carbon tetrachloride	<1.0		1.0		ug/L			07/29/14 18:49	1
Chlorobenzene	<1.0		1.0		ug/L			07/29/14 18:49	1
Chlorodibromomethane	<1.0		1.0		ug/L			07/29/14 18:49	1
Chloroethane	<5.0		5.0		ug/L			07/29/14 18:49	1
Chloroform	<1.0		1.0		ug/L			07/29/14 18:49	1
Chloromethane	<1.0		1.0		ug/L			07/29/14 18:49	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 18:49	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 18:49	1
Dichlorobromomethane	<1.0		1.0		ug/L			07/29/14 18:49	1
Ethylbenzene	<1.0		1.0		ug/L			07/29/14 18:49	1
Methylene Chloride	<5.0		5.0		ug/L			07/29/14 18:49	1
Styrene	<1.0		1.0		ug/L			07/29/14 18:49	1
Tetrachloroethene	<1.0		1.0		ug/L			07/29/14 18:49	1
Toluene	<1.0		1.0		ug/L			07/29/14 18:49	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 18:49	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 18:49	1
Trichloroethene	<1.0		1.0		ug/L			07/29/14 18:49	1
Vinyl chloride	<1.0		1.0		ug/L			07/29/14 18:49	1
Xylenes, Total	<2.0		2.0		ug/L			07/29/14 18:49	1

Client Sample ID: DUP-1 Lab Sample ID: 680-103647-15 Date Collected: 07/23/14 00:00 Matrix: Water

Limits

70 - 130

70 - 130

70 - 130

%Recovery Qualifier

94

116

100

Date Received: 07/25/14 09:30

Surrogate

4-Bromofluorobenzene

Dibromofluoromethane

Toluene-d8 (Surr)

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0	1.0	ug/L		07/29/14 19:10	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L		07/29/14 19:10	1
1,1,2-Trichloroethane	<1.0	1.0	ug/L		07/29/14 19:10	1
1,1-Dichloroethane	<1.0	1.0	ug/L		07/29/14 19:10	1
1,1-Dichloroethene	<1.0	1.0	ug/L		07/29/14 19:10	1
1,2-Dichloroethane	<1.0	1.0	ug/L		07/29/14 19:10	1
1,2-Dichloropropane	<1.0	1.0	ug/L		07/29/14 19:10	1
2-Butanone (MEK)	<10	10	ug/L		07/29/14 19:10	1
2-Hexanone	<10	10	ug/L		07/29/14 19:10	1
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L		07/29/14 19:10	1
Acetone	<25	25	ug/L		07/29/14 19:10	1
Benzene	<1.0	1.0	ug/L		07/29/14 19:10	1

TestAmerica Savannah

7/31/2014

Page 21 of 42

Dil Fac

Analyzed

07/29/14 18:49

07/29/14 18:49

07/29/14 18:49

Prepared

Project/Site: Ashland Alterman

Client: EHS Support, LLC

Client Sample ID: DUP-1

Lab Sample ID: 680-103647-15

Matrix: Water

Date Collected: 07/23/14 00:00 Date Received: 07/25/14 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromoform	<1.0		1.0		ug/L			07/29/14 19:10	
Bromomethane	<5.0		5.0		ug/L			07/29/14 19:10	•
Carbon disulfide	<2.0		2.0		ug/L			07/29/14 19:10	
Carbon tetrachloride	<1.0		1.0		ug/L			07/29/14 19:10	
Chlorobenzene	<1.0		1.0		ug/L			07/29/14 19:10	•
Chlorodibromomethane	<1.0		1.0		ug/L			07/29/14 19:10	
Chloroethane	<5.0		5.0		ug/L			07/29/14 19:10	
Chloroform	<1.0		1.0		ug/L			07/29/14 19:10	•
Chloromethane	<1.0		1.0		ug/L			07/29/14 19:10	•
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 19:10	
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 19:10	•
Dichlorobromomethane	<1.0		1.0		ug/L			07/29/14 19:10	•
Ethylbenzene	<1.0		1.0		ug/L			07/29/14 19:10	
Methylene Chloride	<5.0		5.0		ug/L			07/29/14 19:10	•
Styrene	<1.0		1.0		ug/L			07/29/14 19:10	•
Tetrachloroethene	150		1.0		ug/L			07/29/14 19:10	
Toluene	<1.0		1.0		ug/L			07/29/14 19:10	•
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 19:10	•
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 19:10	
Trichloroethene	<1.0		1.0		ug/L			07/29/14 19:10	•
Vinyl chloride	<1.0		1.0		ug/L			07/29/14 19:10	,
Xylenes, Total	<2.0		2.0		ug/L			07/29/14 19:10	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		70 - 130		07/29/14 19:10	1
Dibromofluoromethane	118		70 - 130		07/29/14 19:10	1
Toluene-d8 (Surr)	88		70 - 130		07/29/14 19:10	1

Client Sample ID: Trip Blank

Date Collected: 07/22/14 09:00

Date Received: 07/25/14 09:30

ab Sample	ID: 680-	103647-16
-----------	----------	-----------

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0		1.0		ug/L			07/29/14 14:19	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			07/29/14 14:19	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			07/29/14 14:19	1
1,1-Dichloroethane	<1.0		1.0		ug/L			07/29/14 14:19	1
1,1-Dichloroethene	<1.0		1.0		ug/L			07/29/14 14:19	1
1,2-Dichloroethane	<1.0		1.0		ug/L			07/29/14 14:19	1
1,2-Dichloropropane	<1.0		1.0		ug/L			07/29/14 14:19	1
2-Butanone (MEK)	<10		10		ug/L			07/29/14 14:19	1
2-Hexanone	<10		10		ug/L			07/29/14 14:19	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			07/29/14 14:19	1
Acetone	<25		25		ug/L			07/29/14 14:19	1
Benzene	<1.0		1.0		ug/L			07/29/14 14:19	1
Bromoform	<1.0		1.0		ug/L			07/29/14 14:19	1
Bromomethane	<5.0		5.0		ug/L			07/29/14 14:19	1
Carbon disulfide	<2.0		2.0		ug/L			07/29/14 14:19	1
Carbon tetrachloride	<1.0		1.0		ug/L			07/29/14 14:19	1

TestAmerica Savannah

Page 22 of 42

1

3

5

8

10

12

11

4 5

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: Trip Blank

Lab Sample ID: 680-103647-16 Date Collected: 07/22/14 09:00

Matrix: Water Date Received: 07/25/14 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	<1.0		1.0		ug/L			07/29/14 14:19	1
Chlorodibromomethane	<1.0		1.0		ug/L			07/29/14 14:19	1
Chloroethane	<5.0		5.0		ug/L			07/29/14 14:19	1
Chloroform	<1.0		1.0		ug/L			07/29/14 14:19	1
Chloromethane	<1.0		1.0		ug/L			07/29/14 14:19	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 14:19	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 14:19	1
Dichlorobromomethane	<1.0		1.0		ug/L			07/29/14 14:19	1
Ethylbenzene	<1.0		1.0		ug/L			07/29/14 14:19	1
Methylene Chloride	<5.0		5.0		ug/L			07/29/14 14:19	1
Styrene	<1.0		1.0		ug/L			07/29/14 14:19	1
Tetrachloroethene	<1.0		1.0		ug/L			07/29/14 14:19	1
Toluene	<1.0		1.0		ug/L			07/29/14 14:19	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 14:19	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 14:19	1
Trichloroethene	<1.0		1.0		ug/L			07/29/14 14:19	1
Vinyl chloride	<1.0		1.0		ug/L			07/29/14 14:19	1
Xylenes, Total	<2.0		2.0		ug/L			07/29/14 14:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		70 - 130					07/29/14 14:19	1
Dibromofluoromethane	105		70 - 130					07/29/14 14:19	1
Toluene-d8 (Surr)	99		70 - 130					07/29/14 14:19	1

Client Sample ID: Equipment Blank

Lab Sample ID: 680-103647-17 Date Collected: 07/22/14 09:30 **Matrix: Water**

Date Received: 07/25/14 09:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0	1.0		ug/L			07/29/14 14:43	1
1,1,2,2-Tetrachloroethane	<1.0	1.0		ug/L			07/29/14 14:43	1
1,1,2-Trichloroethane	<1.0	1.0		ug/L			07/29/14 14:43	1
1,1-Dichloroethane	<1.0	1.0		ug/L			07/29/14 14:43	1
1,1-Dichloroethene	<1.0	1.0		ug/L			07/29/14 14:43	1
1,2-Dichloroethane	<1.0	1.0		ug/L			07/29/14 14:43	1
1,2-Dichloropropane	<1.0	1.0		ug/L			07/29/14 14:43	1
2-Butanone (MEK)	<10	10		ug/L			07/29/14 14:43	1
2-Hexanone	<10	10		ug/L			07/29/14 14:43	1
4-Methyl-2-pentanone (MIBK)	<10	10		ug/L			07/29/14 14:43	1
Acetone	<25	25		ug/L			07/29/14 14:43	1
Benzene	<1.0	1.0		ug/L			07/29/14 14:43	1
Bromoform	<1.0	1.0		ug/L			07/29/14 14:43	1
Bromomethane	<5.0	5.0		ug/L			07/29/14 14:43	1
Carbon disulfide	<2.0	2.0		ug/L			07/29/14 14:43	1
Carbon tetrachloride	<1.0	1.0		ug/L			07/29/14 14:43	1
Chlorobenzene	<1.0	1.0		ug/L			07/29/14 14:43	1
Chlorodibromomethane	<1.0	1.0		ug/L			07/29/14 14:43	1
Chloroethane	<5.0	5.0		ug/L			07/29/14 14:43	1
Chloroform	<1.0	1.0		ug/L			07/29/14 14:43	1

TestAmerica Savannah

Page 23 of 42

Client Sample Results

Client: EHS Support, LLC Project/Site: Ashland Alterman

TestAmerica Job ID: 680-103647-1

Lab Sample ID: 680-103647-17

Matrix: Water

Client Sample ID: Equipment Blank

Date Collected: 07/22/14 09:30 Date Received: 07/25/14 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	<1.0		1.0		ug/L			07/29/14 14:43	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 14:43	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 14:43	1
Dichlorobromomethane	<1.0		1.0		ug/L			07/29/14 14:43	1
Ethylbenzene	<1.0		1.0		ug/L			07/29/14 14:43	1
Methylene Chloride	<5.0		5.0		ug/L			07/29/14 14:43	1
Styrene	<1.0		1.0		ug/L			07/29/14 14:43	1
Tetrachloroethene	<1.0		1.0		ug/L			07/29/14 14:43	1
Toluene	<1.0		1.0		ug/L			07/29/14 14:43	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 14:43	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 14:43	1
Trichloroethene	<1.0		1.0		ug/L			07/29/14 14:43	1
Vinyl chloride	<1.0		1.0		ug/L			07/29/14 14:43	1
Xylenes, Total	<2.0		2.0		ug/L			07/29/14 14:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		70 - 130			-		07/29/14 14:43	1
Dibromofluoromethane	104		70 - 130					07/29/14 14:43	1
Toluene-d8 (Surr)	103		70 ₋ 130					07/29/14 14:43	1

7/31/2014

2

3

5

R

9

10

12

13

Client: EHS Support, LLC Project/Site: Ashland Alterman

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		BFB	DBFM	TOL	ogate Recovery (Acceptance Lim
ah Campia ID	Client Comple ID	(70-130)	(70-130)	(70-130)	
ab Sample ID 80-103647-1	- Client Sample ID	93	118	101	
80-103647-2	MW-3B	94	118	100	
80-103647-2 80-103647-3	MW-8A	98	110	100	
80-103647-4	MW-8B	99	107	103	
80-103647-5	MW-8C	95	118	101	
80-103647-6	MW-9A	98	110	102	
80-103647-7	MW-9B	94	117	100	
80-103647-8	MW-9C	94	118	100	
80-103647-9	MW-10A	101	111	102	
80-103647-10	MW-10B	95	117	100	
80-103647-11	MW-10C	95	116	101	
80-103647-12	MW-11A	99	109	103	
80-103647-13	MW-11B	95	116	100	
80-103647-14	MW-11C	94	116	100	
80-103647-15	DUP-1	94	118	88	
80-103647-16	Trip Blank	99	105	99	
80-103647-17	Equipment Blank	99	104	103	
CS 680-341298/3	Lab Control Sample	103	107	106	
CS 680-341299/4	Lab Control Sample	102	103	100	
CS 680-341498/4	Lab Control Sample	102	111	103	
CSD 680-341298/4	Lab Control Sample Dup	100	106	102	
CSD 680-341299/5	Lab Control Sample Dup	98	102	99	
CSD 680-341498/5	Lab Control Sample Dup	107	112	105	
MB 680-341298/8	Method Blank	97	115	103	
1B 680-341299/8 1B 680-341498/9	Method Blank Method Blank	98 96	103 119	104 100	

Surrogate Legend

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane

TOL = Toluene-d8 (Surr)

TestAmerica Savannah

2

4

J

<u>۾</u>

9

11

12

14

Client: EHS Support, LLC Project/Site: Ashland Alterman

Method: 8260B - Volatile Organic Compounds (GC/MS)

MR MR

Lab Sample ID: MB 680-341298/8

Matrix: Water

Analysis Batch: 341298

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0		1.0		ug/L			07/29/14 12:22	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			07/29/14 12:22	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			07/29/14 12:22	1
1,1-Dichloroethane	<1.0		1.0		ug/L			07/29/14 12:22	1
1,1-Dichloroethene	<1.0		1.0		ug/L			07/29/14 12:22	1
1,2-Dichloroethane	<1.0		1.0		ug/L			07/29/14 12:22	1
1,2-Dichloropropane	<1.0		1.0		ug/L			07/29/14 12:22	1
2-Butanone (MEK)	<10		10		ug/L			07/29/14 12:22	1
2-Hexanone	<10		10		ug/L			07/29/14 12:22	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			07/29/14 12:22	1
Acetone	<25		25		ug/L			07/29/14 12:22	1
Benzene	<1.0		1.0		ug/L			07/29/14 12:22	1
Bromoform	<1.0		1.0		ug/L			07/29/14 12:22	1
Bromomethane	<5.0		5.0		ug/L			07/29/14 12:22	1
Carbon disulfide	<2.0		2.0		ug/L			07/29/14 12:22	1
Carbon tetrachloride	<1.0		1.0		ug/L			07/29/14 12:22	1
Chlorobenzene	<1.0		1.0		ug/L			07/29/14 12:22	1
Chlorodibromomethane	<1.0		1.0		ug/L			07/29/14 12:22	1
Chloroethane	<5.0		5.0		ug/L			07/29/14 12:22	1
Chloroform	<1.0		1.0		ug/L			07/29/14 12:22	1
Chloromethane	<1.0		1.0		ug/L			07/29/14 12:22	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 12:22	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 12:22	1
Dichlorobromomethane	<1.0		1.0		ug/L			07/29/14 12:22	1
Ethylbenzene	<1.0		1.0		ug/L			07/29/14 12:22	1
Methylene Chloride	<5.0		5.0		ug/L			07/29/14 12:22	1
Styrene	<1.0		1.0		ug/L			07/29/14 12:22	1
Tetrachloroethene	<1.0		1.0		ug/L			07/29/14 12:22	1
Toluene	<1.0		1.0		ug/L			07/29/14 12:22	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 12:22	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 12:22	1
Trichloroethene	<1.0		1.0		ug/L			07/29/14 12:22	1
Vinyl chloride	<1.0		1.0		ug/L			07/29/14 12:22	1
Xylenes, Total	<2.0		2.0		ug/L			07/29/14 12:22	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	97		70 - 130		07/29/14 12:22	1
Dibromofluoromethane	115		70 - 130		07/29/14 12:22	1
Toluene-d8 (Surr)	102		70 - 130		07/29/14 12:22	1

Lab Sample ID: LCS 680-341298/3

Matrix: Water

Analysis Batch: 341298

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	50.0	49.9		ug/L		100	76 - 126	
1,1,2,2-Tetrachloroethane	50.0	51.8		ug/L		104	71 - 127	
1,1,2-Trichloroethane	50.0	51.4		ug/L		103	69 - 127	

TestAmerica Savannah

Page 26 of 42

Spike

LCS LCS

TestAmerica Job ID: 680-103647-1

Client: EHS Support, LLC Project/Site: Ashland Alterman

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-341298/3

Matrix: Water

Analysis Batch: 341298

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec.

	Spike	LUS	LCS			76Rec.
Analyte	Added	Result	Qualifier Unit	. D	%Rec	Limits
1,1-Dichloroethane	50.0	54.0	ug/L	 -	108	69 - 132
1,1-Dichloroethene	50.0	52.8	ug/L		106	73 - 134
1,2-Dichloroethane	50.0	53.0	ug/L	-	106	75 - 120
1,2-Dichloropropane	50.0	53.6	ug/L		107	71 - 126
2-Butanone (MEK)	100	103	ug/L	-	103	55 - 142
2-Hexanone	100	102	ug/L	-	102	52 - 149
4-Methyl-2-pentanone (MIBK)	100	103	ug/L	•	103	51 - 143
Acetone	100	118	ug/L	-	118	39 - 162
Benzene	50.0	51.7	ug/L	-	103	74 - 123
Bromoform	50.0	51.5	ug/L	•	103	60 - 134
Bromomethane	50.0	43.9	ug/L	-	88	10 - 171
Carbon disulfide	50.0	50.4	ug/L	-	101	63 - 142
Carbon tetrachloride	50.0	48.3	ug/L	·	97	70 - 131
Chlorobenzene	50.0	51.7	ug/L	-	103	79 - 120
Chlorodibromomethane	50.0	51.1	ug/L	-	102	63 - 134
Chloroethane	50.0	57.5	ug/L		115	47 - 148
Chloroform	50.0	51.4	ug/L	-	103	76 - 128
Chloromethane	50.0	48.9	ug/L	-	98	47 - 151
cis-1,2-Dichloroethene	50.0	48.2	ug/L		96	78 - 127
cis-1,3-Dichloropropene	50.0	52.7	ug/L	-	105	73 - 128
Dichlorobromomethane	50.0	52.2	ug/L	-	104	72 - 129
Ethylbenzene	50.0	50.0	ug/L	•	100	78 - 125
Methylene Chloride	50.0	51.2	ug/L	-	102	79 - 124
Styrene	50.0	53.4	ug/L	-	107	75 - 129
Tetrachloroethene	50.0	49.6	ug/L	•	99	77 - 128
Toluene	50.0	51.1	ug/L	-	102	77 - 125
trans-1,2-Dichloroethene	50.0	51.1	ug/L	-	102	78 - 130
trans-1,3-Dichloropropene	50.0	52.7	ug/L	•	105	72 _ 127
Trichloroethene	50.0	52.0	ug/L	-	104	80 - 120
Vinyl chloride	50.0	52.9	ug/L	-	106	58 - 141
Xylenes, Total	150	154	ug/L		102	80 - 124

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene	103	70 - 130
Dibromofluoromethane	107	70 - 130
Toluene-d8 (Surr)	106	70 - 130

Lab Sample ID: LCSD 680-341298/4

Matrix: Water

Analysis Batch: 341298

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	50.0	49.9		ug/L		100	76 - 126	0	30
1,1,2,2-Tetrachloroethane	50.0	47.4		ug/L		95	71 - 127	9	30
1,1,2-Trichloroethane	50.0	48.3		ug/L		97	69 - 127	6	30
1,1-Dichloroethane	50.0	53.4		ug/L		107	69 - 132	1	30
1,1-Dichloroethene	50.0	54.7		ug/L		109	73 - 134	4	30
1,2-Dichloroethane	50.0	49.6		ug/L		99	75 - 120	7	30

TestAmerica Savannah

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Page 27 of 42

7/31/2014

3

6

9

TU

12

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Lab Sample ID: LCSD 680-341298/4

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water Analysis Batch: 341298

LCSD LCSD Spike %Rec. **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit %Rec 1,2-Dichloropropane 50.0 51.4 71 - 126 ug/L 103 4 30 2-Butanone (MEK) 100 95.4 ug/L 95 55 - 142 8 30 2-Hexanone 100 92.5 ug/L 92 52 _ 149 10 30 4-Methyl-2-pentanone (MIBK) 100 92.9 ug/L 93 51 - 143 11 30 100 107 107 39 - 162 50 Acetone ug/L 10 Benzene 50.0 50.1 ug/L 100 74 - 123 30 Bromoform 50.0 47.7 ug/L 95 60 - 134 30 8 Bromomethane 50.0 39.4 ug/L 79 10 - 171 11 50 ug/L Carbon disulfide 50.0 51.8 104 63 - 142 3 30 Carbon tetrachloride 50.0 49.2 ug/L 98 70 - 131 2 30 Chlorobenzene 50.0 50.0 ug/L 100 79 - 120 3 30 Chlorodibromomethane 50.0 48.7 ug/L 97 63 - 134 50 Chloroethane 50.0 57.9 ug/L 116 47 - 148 40 Chloroform 50.0 51.0 ug/L 102 76 - 128 30 Chloromethane 50.0 47.7 95 47 - 151 30 ug/L cis-1,2-Dichloroethene 50.0 47.8 ug/L 96 78 - 127 30 cis-1,3-Dichloropropene 50.0 50.0 100 73 - 128 ug/L 30 50.0 Dichlorobromomethane 49.4 ug/L 99 72 - 129 6 30 Ethylbenzene 50.0 49.6 ug/L 99 78 - 125 30 Methylene Chloride 50.0 49.9 100 79 - 124 30 ug/L Styrene 50.0 51.4 ug/L 103 75 - 129 30 Tetrachloroethene 50.0 51.2 102 77 - 128 3 30 ug/L Toluene 50.0 49.0 ug/L 98 77 - 125 30 trans-1,2-Dichloroethene 50.0 51.9 ug/L 104 78 - 130 30 trans-1,3-Dichloropropene 50.0 49.5 ug/L 99 72 - 127 50 Trichloroethene 50.0 50.7 ug/L 101 80 - 120 30 Vinyl chloride 50.0 109 58 - 141 54.6 ug/L 3 30

150

151

ug/L

LCSD LCSD

Surrogate	%Recovery Qualifie	r Limits
4-Bromofluorobenzene	100	70 - 130
Dibromofluoromethane	106	70 - 130
Toluene-d8 (Surr)	102	70 - 130

Lab Sample ID: MB 680-341299/8

Matrix: Water

Xylenes, Total

Analysis Batch: 341299

Client Sample ID: Method Blank

80 - 124

101

Prep Type: Total/NA

	MB	MB					
Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0		1.0	ug/L		07/29/14 13:08	1
1,1,2,2-Tetrachloroethane	<1.0		1.0	ug/L		07/29/14 13:08	1
1,1,2-Trichloroethane	<1.0		1.0	ug/L		07/29/14 13:08	1
1,1-Dichloroethane	<1.0		1.0	ug/L		07/29/14 13:08	1
1,1-Dichloroethene	<1.0		1.0	ug/L		07/29/14 13:08	1
1,2-Dichloroethane	<1.0		1.0	ug/L		07/29/14 13:08	1
1,2-Dichloropropane	<1.0		1.0	ug/L		07/29/14 13:08	1
2-Butanone (MEK)	<10		10	ug/L		07/29/14 13:08	1
2-Hexanone	<10		10	ug/L		07/29/14 13:08	1

TestAmerica Savannah

Page 28 of 42

6

8

10

12

13

14

13

Client Sample ID: Method Blank

07/29/14 13:08

07/29/14 13:08

07/29/14 13:08

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client: EHS Support, LLC Project/Site: Ashland Alterman

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-341299/8

Matrix: Water

Analysis Batch: 341299

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			07/29/14 13:08	1
Acetone	<25		25		ug/L			07/29/14 13:08	1
Benzene	<1.0		1.0		ug/L			07/29/14 13:08	1
Bromoform	<1.0		1.0		ug/L			07/29/14 13:08	1
Bromomethane	<5.0		5.0		ug/L			07/29/14 13:08	1
Carbon disulfide	<2.0		2.0		ug/L			07/29/14 13:08	1
Carbon tetrachloride	<1.0		1.0		ug/L			07/29/14 13:08	1
Chlorobenzene	<1.0		1.0		ug/L			07/29/14 13:08	1
Chlorodibromomethane	<1.0		1.0		ug/L			07/29/14 13:08	1
Chloroethane	<5.0		5.0		ug/L			07/29/14 13:08	1
Chloroform	<1.0		1.0		ug/L			07/29/14 13:08	1
Chloromethane	<1.0		1.0		ug/L			07/29/14 13:08	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 13:08	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 13:08	1
Dichlorobromomethane	<1.0		1.0		ug/L			07/29/14 13:08	1
Ethylbenzene	<1.0		1.0		ug/L			07/29/14 13:08	1
Methylene Chloride	<5.0		5.0		ug/L			07/29/14 13:08	1
Styrene	<1.0		1.0		ug/L			07/29/14 13:08	1
Tetrachloroethene	<1.0		1.0		ug/L			07/29/14 13:08	1
Toluene	<1.0		1.0		ug/L			07/29/14 13:08	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			07/29/14 13:08	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			07/29/14 13:08	1

MB	MB	

<1.0

<1.0

<2.0

Surrogate	%Recovery	Qualifier	Limits	Prepared	d Analyzed	Dil Fac
4-Bromofluorobenzene	98		70 - 130		07/29/14 13:08	1
Dibromofluoromethane	103		70 - 130		07/29/14 13:08	1
Toluene-d8 (Surr)	104		70 - 130		07/29/14 13:08	1

1.0

1.0

2.0

ug/L

ug/L

ug/L

Lab Sample ID: LCS 680-341299/4

Matrix: Water

Trichloroethene

Vinyl chloride

Xylenes, Total

Analysis Batch: 341299

Alialysis Datcil. 341233								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	50.0	53.4		ug/L		107	76 - 126	
1,1,2,2-Tetrachloroethane	50.0	48.5		ug/L		97	71 - 127	
1,1,2-Trichloroethane	50.0	48.2		ug/L		96	69 - 127	
1,1-Dichloroethane	50.0	52.4		ug/L		105	69 - 132	
1,1-Dichloroethene	50.0	52.0		ug/L		104	73 - 134	
1,2-Dichloroethane	50.0	48.4		ug/L		97	75 - 120	
1,2-Dichloropropane	50.0	50.6		ug/L		101	71 - 126	
2-Butanone (MEK)	100	84.5		ug/L		85	55 - 142	
2-Hexanone	100	94.8		ug/L		95	52 - 149	
4-Methyl-2-pentanone (MIBK)	100	93.8		ug/L		94	51 - 143	
Acetone	100	92.6		ug/L		93	39 - 162	
Benzene	50.0	49.6		ug/L		99	74 - 123	

TestAmerica Savannah

TestAmerica Job ID: 680-103647-1

Client: EHS Support, LLC Project/Site: Ashland Alterman

Lab Sample ID: LCS 680-341299/4

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water

Analysis Batch: 341299

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Bromoform	50.0	48.3		ug/L		97	60 - 134
Bromomethane	50.0	45.5		ug/L		91	10 - 171
Carbon disulfide	50.0	54.2		ug/L		108	63 - 142
Carbon tetrachloride	50.0	53.7		ug/L		107	70 - 131
Chlorobenzene	50.0	51.0		ug/L		102	79 - 120
Chlorodibromomethane	50.0	48.6		ug/L		97	63 - 134
Chloroethane	50.0	39.5		ug/L		79	47 - 148
Chloroform	50.0	50.4		ug/L		101	76 - 128
Chloromethane	50.0	59.9		ug/L		120	47 - 151
cis-1,2-Dichloroethene	50.0	46.3		ug/L		93	78 ₋ 127
cis-1,3-Dichloropropene	50.0	56.3		ug/L		113	73 - 128
Dichlorobromomethane	50.0	55.3		ug/L		111	72 ₋ 129
Ethylbenzene	50.0	52.4		ug/L		105	78 ₋ 125
Methylene Chloride	50.0	47.9		ug/L		96	79 ₋ 124
Styrene	50.0	52.4		ug/L		105	75 ₋ 129
Tetrachloroethene	50.0	49.8		ug/L		100	77 - 128
Toluene	50.0	48.2		ug/L		96	77 ₋ 125
trans-1,2-Dichloroethene	50.0	50.3		ug/L		101	78 ₋ 130
trans-1,3-Dichloropropene	50.0	57.6		ug/L		115	72 ₋ 127
Trichloroethene	50.0	51.2		ug/L		102	80 _ 120
Vinyl chloride	50.0	57.1		ug/L		114	58 - 141
Xylenes, Total	150	156		ug/L		104	80 - 124

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene	102	70 - 130
Dibromofluoromethane	103	70 - 130
Toluene-d8 (Surr)	100	70 - 130

Lab Sample ID: LCSD 680-341299/5

Matrix: Water

Analysis Batch: 341299

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

,,	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	50.0	52.5		ug/L		105	76 - 126	2	30
1,1,2,2-Tetrachloroethane	50.0	47.3		ug/L		95	71 - 127	2	30
1,1,2-Trichloroethane	50.0	47.9		ug/L		96	69 - 127	1	30
1,1-Dichloroethane	50.0	51.8		ug/L		104	69 - 132	1	30
1,1-Dichloroethene	50.0	50.4		ug/L		101	73 - 134	3	30
1,2-Dichloroethane	50.0	49.8		ug/L		100	75 - 120	3	30
1,2-Dichloropropane	50.0	51.0		ug/L		102	71 - 126	1	30
2-Butanone (MEK)	100	81.8		ug/L		82	55 - 142	3	30
2-Hexanone	100	93.3		ug/L		93	52 - 149	2	30
4-Methyl-2-pentanone (MIBK)	100	93.2		ug/L		93	51 - 143	1	30
Acetone	100	93.1		ug/L		93	39 - 162	1	50
Benzene	50.0	48.4		ug/L		97	74 - 123	2	30
Bromoform	50.0	45.9		ug/L		92	60 - 134	5	30
Bromomethane	50.0	48.8		ug/L		98	10 - 171	7	50
Carbon disulfide	50.0	53.6		ug/L		107	63 - 142	1	30

TestAmerica Savannah

Page 30 of 42

7/31/2014

Client: EHS Support, LLC Project/Site: Ashland Alterman

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-341299/5

Matrix: Water

Analysis Batch: 341299

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Allalysis Datoli. 041200									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon tetrachloride	50.0	54.2		ug/L		108	70 - 131	1	30
Chlorobenzene	50.0	49.7		ug/L		99	79 - 120	3	30
Chlorodibromomethane	50.0	46.9		ug/L		94	63 - 134	3	50
Chloroethane	50.0	39.0		ug/L		78	47 - 148	1	40
Chloroform	50.0	49.0		ug/L		98	76 - 128	3	30
Chloromethane	50.0	59.6		ug/L		119	47 - 151	0	30
cis-1,2-Dichloroethene	50.0	45.9		ug/L		92	78 - 127	1	30
cis-1,3-Dichloropropene	50.0	56.9		ug/L		114	73 - 128	1	30
Dichlorobromomethane	50.0	55.4		ug/L		111	72 - 129	0	30
Ethylbenzene	50.0	50.9		ug/L		102	78 - 125	3	30
Methylene Chloride	50.0	48.1		ug/L		96	79 - 124	1	30
Styrene	50.0	51.1		ug/L		102	75 - 129	2	30
Tetrachloroethene	50.0	48.4		ug/L		97	77 - 128	3	30
Toluene	50.0	47.4		ug/L		95	77 - 125	2	30
trans-1,2-Dichloroethene	50.0	49.7		ug/L		99	78 - 130	1	30
trans-1,3-Dichloropropene	50.0	57.3		ug/L		115	72 - 127	1	50
Trichloroethene	50.0	50.9		ug/L		102	80 - 120	1	30
Vinyl chloride	50.0	55.6		ug/L		111	58 - 141	3	30
Xylenes, Total	150	153		ug/L		102	80 - 124	2	30

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene	98	70 - 130
Dibromofluoromethane	102	70 - 130
Toluene-d8 (Surr)	99	70 - 130

Lab Sample ID: MB 680-341498/9

Matrix: Water

Analysis Batch: 341498

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0		1.0		ug/L			07/30/14 11:41	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			07/30/14 11:41	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			07/30/14 11:41	1
1,1-Dichloroethane	<1.0		1.0		ug/L			07/30/14 11:41	1
1,1-Dichloroethene	<1.0		1.0		ug/L			07/30/14 11:41	1
1,2-Dichloroethane	<1.0		1.0		ug/L			07/30/14 11:41	1
1,2-Dichloropropane	<1.0		1.0		ug/L			07/30/14 11:41	1
2-Butanone (MEK)	<10		10		ug/L			07/30/14 11:41	1
2-Hexanone	<10		10		ug/L			07/30/14 11:41	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			07/30/14 11:41	1
Acetone	<25		25		ug/L			07/30/14 11:41	1
Benzene	<1.0		1.0		ug/L			07/30/14 11:41	1
Bromoform	<1.0		1.0		ug/L			07/30/14 11:41	1
Bromomethane	<5.0		5.0		ug/L			07/30/14 11:41	1
Carbon disulfide	<2.0		2.0		ug/L			07/30/14 11:41	1
Carbon tetrachloride	<1.0		1.0		ug/L			07/30/14 11:41	1
Chlorobenzene	<1.0		1.0		ug/L			07/30/14 11:41	1
Chlorodibromomethane	<1.0		1.0		ug/L			07/30/14 11:41	1

TestAmerica Savannah

Page 31 of 42

7/31/2014

Client: EHS Support, LLC Project/Site: Ashland Alterman

> Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Lab Sample ID: MB 680-341498/9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water

Analysis Batch: 341498

, ,								
	MB MB							
Analyte	Result Qua	alifier RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Chloroethane	<5.0	5.0	U	ıg/L			07/30/14 11:41	1
Chloroform	<1.0	1.0	U	ıg/L			07/30/14 11:41	1
Chloromethane	<1.0	1.0	U	ıg/L			07/30/14 11:41	1
cis-1,2-Dichloroethene	<1.0	1.0	U	ıg/L			07/30/14 11:41	1
cis-1,3-Dichloropropene	<1.0	1.0	U	ıg/L			07/30/14 11:41	1
Dichlorobromomethane	<1.0	1.0	U	ıg/L			07/30/14 11:41	1
Ethylbenzene	<1.0	1.0	U	ıg/L			07/30/14 11:41	1
Methylene Chloride	<5.0	5.0	U	ıg/L			07/30/14 11:41	1
Styrene	<1.0	1.0	U	ıg/L			07/30/14 11:41	1
Tetrachloroethene	<1.0	1.0	U	ıg/L			07/30/14 11:41	1
Toluene	<1.0	1.0	U	ıg/L			07/30/14 11:41	1
trans-1,2-Dichloroethene	<1.0	1.0	U	ıg/L			07/30/14 11:41	1
trans-1,3-Dichloropropene	<1.0	1.0	U	ıg/L			07/30/14 11:41	1
Trichloroethene	<1.0	1.0	U	ıg/L			07/30/14 11:41	1
Vinyl chloride	<1.0	1.0	U	ıg/L			07/30/14 11:41	1
Xylenes, Total	<2.0	2.0	U	ıg/L			07/30/14 11:41	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	96	70 - 130		07/30/14 11:41	1
Dibromofluoromethane	119	70 - 130		07/30/14 11:41	1
Toluene-d8 (Surr)	100	70 - 130		07/30/14 11:41	1

Lab Sample ID: LCS 680-341498/4

Matrix: Water

Analysis Batch: 341498	Spike	1.09	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	50.0	47.8		ug/L	— <u>-</u>	96	76 - 126
1,1,2,2-Tetrachloroethane	50.0	45.8		ug/L		92	71 _ 127
1,1,2-Trichloroethane	50.0	49.6		ug/L		99	69 ₋ 127
1,1-Dichloroethane	50.0	51.1		ug/L		102	69 _ 132
1,1-Dichloroethene	50.0	51.1		ug/L		102	73 - 134
1,2-Dichloroethane	50.0	50.6		ug/L		101	75 - 120
1,2-Dichloropropane	50.0	51.3		ug/L		103	71 - 126
2-Butanone (MEK)	100	82.3		ug/L		82	55 - 142
2-Hexanone	100	77.1		ug/L		77	52 - 149
4-Methyl-2-pentanone (MIBK)	100	80.4		ug/L		80	51 - 143
Acetone	100	96.7		ug/L		97	39 - 162
Benzene	50.0	50.3		ug/L		101	74 - 123
Bromoform	50.0	46.7		ug/L		93	60 - 134
Bromomethane	50.0	35.0		ug/L		70	10 - 171
Carbon disulfide	50.0	51.3		ug/L		103	63 - 142
Carbon tetrachloride	50.0	47.5		ug/L		95	70 - 131
Chlorobenzene	50.0	50.7		ug/L		101	79 ₋ 120
Chlorodibromomethane	50.0	49.3		ug/L		99	63 - 134
Chloroethane	50.0	57.5		ug/L		115	47 - 148
Chloroform	50.0	51.7		ug/L		103	76 - 128
Chloromethane	50.0	38.7		ug/L		77	47 - 151

Page 32 of 42

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-341498/4 **Matrix: Water**

Analysis Batch: 341498

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	50.0	49.7		ug/L		99	78 - 127	
cis-1,3-Dichloropropene	50.0	50.7		ug/L		101	73 _ 128	
Dichlorobromomethane	50.0	50.0		ug/L		100	72 _ 129	
Ethylbenzene	50.0	49.3		ug/L		99	78 ₋ 125	
Methylene Chloride	50.0	50.2		ug/L		100	79 _ 124	
Styrene	50.0	51.5		ug/L		103	75 - 129	
Tetrachloroethene	50.0	49.7		ug/L		99	77 _ 128	
Toluene	50.0	49.8		ug/L		100	77 _ 125	
trans-1,2-Dichloroethene	50.0	50.6		ug/L		101	78 - 130	
trans-1,3-Dichloropropene	50.0	49.3		ug/L		99	72 ₋ 127	
Trichloroethene	50.0	51.1		ug/L		102	80 - 120	
Vinyl chloride	50.0	51.8		ug/L		104	58 ₋ 141	
Xylenes, Total	150	152		ug/L		101	80 - 124	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene	102	70 - 130
Dibromofluoromethane	111	70 - 130
Toluene-d8 (Surr)	103	70 - 130

Lab Sample ID: LCSD 680-341498/5

Matrix: Water

Analysis Batch: 341498

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	50.0	49.1		ug/L		98	76 - 126	3	30
1,1,2,2-Tetrachloroethane	50.0	51.2		ug/L		102	71 - 127	11	30
1,1,2-Trichloroethane	50.0	52.4		ug/L		105	69 - 127	5	30
1,1-Dichloroethane	50.0	51.1		ug/L		102	69 - 132	0	30
1,1-Dichloroethene	50.0	50.2		ug/L		100	73 - 134	2	30
1,2-Dichloroethane	50.0	53.7		ug/L		107	75 - 120	6	30
1,2-Dichloropropane	50.0	52.8		ug/L		106	71 - 126	3	30
2-Butanone (MEK)	100	91.0		ug/L		91	55 - 142	10	30
2-Hexanone	100	88.1		ug/L		88	52 - 149	13	30
4-Methyl-2-pentanone (MIBK)	100	91.2		ug/L		91	51 - 143	13	30
Acetone	100	110		ug/L		110	39 - 162	13	50
Benzene	50.0	51.8		ug/L		104	74 - 123	3	30
Bromoform	50.0	51.0		ug/L		102	60 - 134	9	30
Bromomethane	50.0	36.3		ug/L		73	10 - 171	4	50
Carbon disulfide	50.0	50.4		ug/L		101	63 - 142	2	30
Carbon tetrachloride	50.0	47.1		ug/L		94	70 - 131	1	30
Chlorobenzene	50.0	52.5		ug/L		105	79 - 120	3	30
Chlorodibromomethane	50.0	52.7		ug/L		105	63 - 134	7	50
Chloroethane	50.0	56.8		ug/L		114	47 - 148	1	40
Chloroform	50.0	51.8		ug/L		104	76 - 128	0	30
Chloromethane	50.0	39.0		ug/L		78	47 - 151	1	30
cis-1,2-Dichloroethene	50.0	49.7		ug/L		99	78 - 127	0	30
cis-1,3-Dichloropropene	50.0	52.8		ug/L		106	73 - 128	4	30
Dichlorobromomethane	50.0	51.2		ug/L		102	72 - 129	2	30

TestAmerica Savannah

Page 33 of 42

QC Sample Results

Client: EHS Support, LLC Project/Site: Ashland Alterman

TestAmerica Job ID: 680-103647-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-341498/5

Matrix: Water

Analysis Batch: 341498

Client Sample ID: Lab Control Sample Dup

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethylbenzene	50.0	50.6		ug/L		101	78 - 125	3	30
Methylene Chloride	50.0	50.9		ug/L		102	79 - 124	1	30
Styrene	50.0	54.1		ug/L		108	75 - 129	5	30
Tetrachloroethene	50.0	50.9		ug/L		102	77 - 128	2	30
Toluene	50.0	51.2		ug/L		102	77 - 125	3	30
trans-1,2-Dichloroethene	50.0	51.2		ug/L		102	78 - 130	1	30
trans-1,3-Dichloropropene	50.0	52.3		ug/L		105	72 - 127	6	50
Trichloroethene	50.0	51.9		ug/L		104	80 - 120	2	30
Vinyl chloride	50.0	50.4		ug/L		101	58 - 141	3	30
Xylenes, Total	150	157		ug/L		105	80 - 124	4	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	107		70 - 130
Dibromofluoromethane	112		70 - 130
Toluene-d8 (Surr)	105		70 - 130

Prep Type: Total/NA

QC Association Summary

Client: EHS Support, LLC
Project/Site: Ashland Alterman
TestAmerica Job ID: 680-103647-1

GC/MS VOA

Analysis Batch: 341298

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-103647-1	MW-3A	Total/NA	Water	8260B	
680-103647-2	MW-3B	Total/NA	Water	8260B	
680-103647-3	MW-8A	Total/NA	Water	8260B	
680-103647-4	MW-8B	Total/NA	Water	8260B	
680-103647-5	MW-8C	Total/NA	Water	8260B	
680-103647-7	MW-9B	Total/NA	Water	8260B	
680-103647-8	MW-9C	Total/NA	Water	8260B	
680-103647-9	MW-10A	Total/NA	Water	8260B	
680-103647-10	MW-10B	Total/NA	Water	8260B	
680-103647-11	MW-10C	Total/NA	Water	8260B	
680-103647-14	MW-11C	Total/NA	Water	8260B	
680-103647-15	DUP-1	Total/NA	Water	8260B	
LCS 680-341298/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-341298/4	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-341298/8	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 341299

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-103647-16	Trip Blank	Total/NA	Water	8260B	
680-103647-17	Equipment Blank	Total/NA	Water	8260B	
LCS 680-341299/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-341299/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-341299/8	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 341498

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-103647-6	MW-9A	Total/NA	Water	8260B	
680-103647-12	MW-11A	Total/NA	Water	8260B	
680-103647-13	MW-11B	Total/NA	Water	8260B	
LCS 680-341498/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-341498/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-341498/9	Method Blank	Total/NA	Water	8260B	

5

5

7

0

10

۳

13

16

Client: EHS Support, LLC Project/Site: Ashland Alterman

Lab Sample ID: 680-103647-1

Matrix: Water

Client Sample ID: MW-3A Date Collected: 07/22/14 12:58 Date Received: 07/25/14 09:30

Client Sample ID: MW-3B

Date Collected: 07/22/14 13:37

Date Received: 07/25/14 09:30

Date Received: 07/25/14 09:30

Date Received: 07/25/14 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	341298	07/29/14 14:09	MMT	TAL SAV
	Instrum	ent ID: CMSC								

Lab Sample ID: 680-103647-2

Matrix: Water

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260B	Run	Dil Factor	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 341298	Prepared or Analyzed 07/29/14 14:31	Analyst MMT	_ Lab TAL SAV	_
	Instrume	ent ID: CMSC									

Client Sample ID: MW-8A Lab Sample ID: 680-103647-3

Date Collected: 07/23/14 16:10 **Matrix: Water**

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Number or Analyzed Туре Run Factor Amount Analyst Lab MMT TAL SAV Total/NA Analysis 8260B 10 341298 07/29/14 14:52 5 mL 5 mL Instrument ID: CMSC

Client Sample ID: MW-8B Lab Sample ID: 680-103647-4 Date Collected: 07/23/14 15:25

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Method Prep Type Туре Run Factor **Amount** Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260B 2 5 mL 5 mL 341298 07/29/14 15:13 MMT TAL SAV Instrument ID: CMSC

Client Sample ID: MW-8C Lab Sample ID: 680-103647-5

Matrix: Water Date Collected: 07/23/14 17:35

Date Received: 07/25/14 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	341298	07/29/14 15:35	MMT	TAL SAV
	Instrum	ent ID: CMSC								

Lab Sample ID: 680-103647-6 Client Sample ID: MW-9A

Date Collected: 07/23/14 14:35 Matrix: Water Date Received: 07/25/14 09:30

Dil Batch Initial Final Batch Prepared Batch **Prep Type** Туре Method Run Factor Amount **Amount** Number or Analyzed Analyst Total/NA 8260B 07/30/14 12:24 TF1 Analysis 5 mL 5 mL 341498 TAL SAV

Instrument ID: CMSC

TestAmerica Savannah

Client: EHS Support, LLC Project/Site: Ashland Alterman

Lab Sample ID: 680-103647-7

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Client Sample ID: MW-9B Date Collected: 07/23/14 15:12 Date Received: 07/25/14 09:30

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Total/NA Analysis 8260B 5 mL 5 mL 341298 07/29/14 16:18 MMT TAL SAV Instrument ID: CMSC

Client Sample ID: MW-9C Lab Sample ID: 680-103647-8

Date Collected: 07/23/14 13:50 **Matrix: Water**

Date Received: 07/25/14 09:30

Batch Batch Dil Initial Final Batch Prepared Method Amount Amount Number or Analyzed Prep Type Type Run Factor Analyst Lab Total/NA Analysis 8260B 5 mL 341298 07/29/14 16:39 MMT TAL SAV 5 mL Instrument ID: CMSC

Client Sample ID: MW-10A Lab Sample ID: 680-103647-9

Date Collected: 07/23/14 11:35

Date Received: 07/25/14 09:30

Batch Batch Dil Initial Final Batch Prepared Method Number or Analyzed Prep Type Type Factor Amount Amount Run Analyst Lab 07/29/14 17:01 TAL SAV 341298 MMT Total/NA Analysis 8260B 5 5 mL 5 mL Instrument ID: CMSC

Client Sample ID: MW-10B Lab Sample ID: 680-103647-10

Date Collected: 07/23/14 12:13

Date Received: 07/25/14 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	341298	07/29/14 17:23	MMT	TAL SAV
	Instrume	ent ID: CMSC								

Client Sample ID: MW-10C Lab Sample ID: 680-103647-11

Date Collected: 07/23/14 13:00

Date Received: 07/25/14 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	341298	07/29/14 17:44	MMT	TAL SAV
	Instrum	ent ID: CMSC								

Client Sample ID: MW-11A Lab Sample ID: 680-103647-12

Date Collected: 07/22/14 15:45

Date Received: 07/25/14 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		5	5 mL	5 mL	341498	07/30/14 12:45	TF1	TAL SAV
	Instrume	ent ID: CMSC								

TestAmerica Savannah

Client: EHS Support, LLC Project/Site: Ashland Alterman

Lab Sample ID: 680-103647-13

Client Sample ID: MW-11B Date Collected: 07/22/14 12:13 Date Received: 07/25/14 09:30

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Total/NA Analysis 8260B 5 mL 5 mL 341498 07/30/14 13:07 TF1 TAL SAV Instrument ID: CMSC

Client Sample ID: MW-11C

Lab Sample ID: 680-103647-14

Date Collected: 07/22/14 15:05 Date Received: 07/25/14 09:30

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	341298	07/29/14 18:49	MMT	TAL SAV
	Instrume	ent ID: CMSC								

Client Sample ID: DUP-1

Lab Sample ID: 680-103647-15

Matrix: Water

Date Collected: 07/23/14 00:00 Date Received: 07/25/14 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	341298	07/29/14 19:10	MMT	TAL SAV
	Instrum	ent ID: CMSC								

Client Sample ID: Trip Blank

Lab Sample ID: 680-103647-16

Matrix: Water

Date Collected: 07/22/14 09:00 Date Received: 07/25/14 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	341299	07/29/14 14:19	TF1	TAL SAV
	Instrum	ent ID: CMSAC								

Lab Sample ID: 680-103647-17

Date Collected: 07/22/14 09:30

Client Sample ID: Equipment Blank

Matrix: Water

Date Received: 07/25/14 09:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	341299	07/29/14 14:43	TF1	TAL SAV
	Instrume	ent ID: CMSAC								

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

vannah

2 LaRoche Avenue

annah, GA 31404

ne 912.354.7858 fax 912.352.0165				TestAmerica Laboratories, In
Client Contact	Project Manager: Michael Dever (Ashland)	Site Contact:	Date:	COC No:
helle Stayrook	Tel/Fax: 614-790-1586	Lab Contact: Jerry Lanier	Carrier: TA-Atlanta	ofocs
S Support	Analysis Turnaround Time			Job No.

Chain of Custody Record

TestAmeric

THE LEADER IN ENVIRONMENTAL TEX

Client Contact	Project Manager: Michael Dever (Ashland)	Site Contact:	Date:	COC No:
helle Stayrook	Tel/Fax: 614-790-1586	Lab Contact: Jerry Lanier	Carrier: TA-Atlanta	of COCs
S Support	Analysis Turnaround Time			Job No.
4 Cemetery Road, PMB 104, Hilliard, Ohio 43026-1124	Calendar (C) or Work Days (W)			
2) 807-1494 Phone	TAT if different from Below			
7) 293-6642 eFAX	2 weeks			SDG No.
ject Name: Ashland Alterman	1 week			
3: Tara Shopping Center, 8564 Tara Blvd. Jonesboro, GA	2 days			
)#	1 day	0978		
	Sample Sample			
Sample Identification	Date Time Type Matrix Cont.			Sample Specific Notes:
1W-3A 4/	7/24/4 1258 CW G 3	X		
1W-3BV	7/22/14 1337 Cm C 3			
1 W- 8 A .	7/23/14 1610 Gm C 3			
1. 8B. 1	7/23/141525 Cm G 3	~		
1 we 8C //	7/23/14 1735 am C 3			
1 mg-9A 3-//	7/23/14 1435 / 22 6 3			
12-9B.	7/23/4 15/2 66 6 3	 		
1M-9C:-//	7/23/14 1350 Cel G 3			
10 A "- 10 A "-	7/3/W 1135 GW G 3	\rightarrow		
1W-10B 1/	723/4 1213 GW G 3			
1W-10C/	<u> </u>	- X	680-103647 Chain of Custody	kpo
1W-ILAU	7/22/10 1545 0m C 3	\frac{1}{2}		
servation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaC	5=NaOH; 6= Other NONE			
sible Hazard Identification		Sample Disposal (A fee may be	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ed longer than 1 month)
Non-Hazard Flammable Skin Irritant	Poison B Unknown	Return To Client	Disposal By Lab	ve For Months

alysis and Reporting set up for Condensed Dilution Formatting. Email sampling log-in, COCs, and final results to michelle.stayrook@ehs-support.com. Email draft invoices for approval to michelle.stayrook@ehs-support.com ect Bill To Ashland under existing contract pricing.

cial Instructions/QC Requirements & Comments:

Jate/Time: Date/Time: Date/Time; 0~103GH Company: Received by: 13 Received by: 1:12 JO01 4 47+68 Company: Company: Cognpany: inquisad by: :kq pg 14 inquished by:

ınnah

aRoche Avenue

nah, GA 31404

912.354.7858 fax 912.352.0165

Chain of Custody Record

TestAmeric

THE LEADER IN ENVIRONMENTAL TEST THE LEADER IN ENVIRONMENTAL TEST

Client Contact	Project Manager: Michael Dever (Ashland)	Site Contact:	Date:	COC No:
lle Stayrook	Tel/Fax: 614-790-1586	Lab Contact: Jerry Lanier	Carrier: TA-Atlanta	of COCs
Support	Analysis Turnaround Time			Job No.
Cemetery Road, PMB 104, Hilliard, Ohio 43026-1124	Calendar (C) or Work Days (W)			
807-1494 Phone	TAT if different from Below			
293-6642 eFAX	2 weeks			SDG No.
ct Name: Ashland Alterman	i week			الله الله الله الله الله الله الله الله
Tara Shopping Center, 8564 Tara Blvd. Jonesboro, GA	2 days			
	1 day			
	Somely	red Sg		
Sample Identification	Date Time Type Matrix Cont.			Sample Specific Notes:
W-11B	子子二十二十二日 60 6 3	X		
W-11C	7/2414 1505 Cm G 3	×		
ا مار	T 2 ~ 0000 M/cz/L	×		
0 \$ 1cm		> >		
Shoppent Olonh	7/22/14 0430 GW 6- 3	`×		
of 42				
vation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	OH; 6= Other NONE			
le Hazard Identification		Sample Disposal (A fee may be	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	d longer than 1 month)

sis and Reporting set up for Condensed Dilution Formatting. Email sampling log-in, COCs, and final results to michelle.stayrook@ehs-support.com. Email draft invoices for approval to michelle.stayrook@ehs-support.com. Bill To Ashland under existing contract pricing. I Instructions/QC Requirements & Comments:

Months

Archive For

Disposal By Lab

Return To Client

Unknown

Poison B

Skin Irritant

Von-Hazard

120-103°47 Company: Company: 13 ¢d by: ~ Received by: Received by: os:10/ h1/h6 Date/Time: Company: Compens Company: wished y: uished by:

Login Sample Receipt Checklist

Client: EHS Support, LLC Job Number: 680-103647-1

Login Number: 103647 List Source: TestAmerica Savannah

List Number: 1

Creator: Kicklighter, Marilyn D

ordator. Manighter, marry r b		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

-

Certification Summary

Client: EHS Support, LLC Project/Site: Ashland Alterman

TestAmerica Job ID: 680-103647-1

Laboratory: TestAmerica Savannah

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Georgia	State Program	4	803	06-30-15

4

5

6

8

10

11

12

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-107535-1 Client Project/Site: Ashland Alterman

Revision: 1

For:

EHS Support, LLC 3909 Tweedsmuir Drive Columbus, Ohio 43221

Attn: Ms. Michelle Stayrook

Jerry Janier

Authorized for release by: 12/4/2014 9:28:59 AM

Jerry Lanier, Project Manager I (912)354-7858 e.3410

jerry.lanier@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: EHS Support, LLC Project/Site: Ashland Alterman

TestAmerica Job ID: 680-107535-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
	5
Definitions	6
Detection Summary	7
Client Sample Results	9
Surrogate Summary	20
QC Sample Results	21
QC Association	30
Chronicle	31
Chain of Custody	34
Receipt Checklists	35
Certification Summary	36

Case Narrative

Client: EHS Support, LLC Project/Site: Ashland Alterman

TestAmerica Job ID: 680-107535-1

Job ID: 680-107535-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: EHS Support, LLC

Project: Ashland Alterman

Report Number: 680-107535-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 11/21/2014; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 0.1 C.

The final report was revised to report the less dilute run for sample MW-19A (680-107535-6), per client request.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples Trip Blank (680-107535-1), MW-22A (680-107535-2), MW-22B (680-107535-3), MW-21C (680-107535-4), MW-21B (680-107535-5), MW-19A (680-107535-6), MW-19D (680-107535-7), MW-19C (680-107535-8), MW-19B (680-107535-9), Dup-1 (680-107535-10) and Field Blank-1 (680-107535-11) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 11/30/2014 and 12/02/2014.

Surrogate recovery for the following sample was outside the upper control limit: MW-22A (680-107535-2). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Samples MW-19A (680-107535-6)[20X], MW-19C (680-107535-8)[2X] and MW-19B (680-107535-9)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 360958.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

6

9

10

12

Sample Summary

Client: EHS Support, LLC Project/Site: Ashland Alterman

TestAmerica Job ID: 680-107535-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-107535-1	Trip Blank	Water	11/19/14 11:00	11/21/14 10:00
680-107535-2	MW-22A	Water	11/19/14 11:33	11/21/14 10:00
680-107535-3	MW-22B	Water	11/19/14 12:07	11/21/14 10:00
680-107535-4	MW-21C	Water	11/19/14 13:53	11/21/14 10:00
680-107535-5	MW-21B	Water	11/19/14 13:40	11/21/14 10:00
680-107535-6	MW-19A	Water	11/19/14 16:22	11/21/14 10:00
680-107535-7	MW-19D	Water	11/19/14 16:14	11/21/14 10:00
680-107535-8	MW-19C	Water	11/19/14 17:29	11/21/14 10:00
680-107535-9	MW-19B	Water	11/19/14 18:07	11/21/14 10:00
680-107535-10	Dup-1	Water	11/19/14 00:00	11/21/14 10:00
680-107535-11	Field Blank-1	Water	11/19/14 14:30	11/21/14 10:00

3

4

5

7

8

9

11

12

1 A

Method Summary

Client: EHS Support, LLC Project/Site: Ashland Alterman

TestAmerica Job ID: 680-107535-1

Method Description	Protocol	Laboratory
Volatile Organic Compounds (GC/MS)	SW846	TAL SAV

Protocol References:

Method 8260B

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

3

5

7

10

12

Definitions/Glossary

Client: EHS Support, LLC Project/Site: Ashland Alterman TestAmerica Job ID: 680-107535-1

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

 $\overline{\mathsf{X}}$ Surrogate is outside control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid

CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration MDA Minimum detectable activity **EDL Estimated Detection Limit** MDC Minimum detectable concentration

MDL Method Detection Limit Minimum Level (Dioxin) ML NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control** Relative error ratio RER

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF TEQ Toxicity Equivalent Quotient (Dioxin)

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: Trip Blank

Lab Sample ID: 680-107535-1

No Detections.

Client Sample ID: MW-22A Lab Sample ID: 680-107535-2

No Detections.

Client Sample ID: MW-22B Lab Sample ID: 680-107535-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Chloroform	23	1.0	ug/L	1	8260B	Total/NA
Dichlorobromomethane	6.7	1.0	ug/L	1	8260B	Total/NA

Client Sample ID: MW-21C Lab Sample ID: 680-107535-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloroform	2.3	1.0	ug/L		8260B	Total/NA

Client Sample ID: MW-21B Lab Sample ID: 680-107535-5

No Detections.

Client Sample ID: MW-19A Lab Sample ID: 680-107535-6

Analyte	Result C	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethane	86	5.0		ug/L	5	_	8260B	Total/NA
Benzene	1600	20		ug/L	20		8260B	Total/NA
Ethylbenzene	87	5.0		ug/L	5		8260B	Total/NA
Xylenes, Total	180	10		ug/L	5		8260B	Total/NA

Client Sample ID: MW-19D Lab Sample ID: 680-107535-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloroform	11		1.0		ug/L	1	_	8260B	Total/NA
cis-1,2-Dichloroethene	13		1.0		ug/L	1		8260B	Total/NA
Tetrachloroethene	94		1.0		ug/L	1		8260B	Total/NA
Trichloroethene	7.1		1.0		ug/L	1		8260B	Total/NA

Client Sample ID: MW-19C Lab Sample ID: 680-107535-8

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	33	2.0	ug/L		8260B	Total/NA
Tetrachloroethene	290	2.0	ug/L	2	8260B	Total/NA
Trichloroethene	18	2.0	ug/L	2	8260B	Total/NA

Client Sample ID: MW-19B Lab Sample ID: 680-107535-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	100		5.0		ug/L	5	_	8260B	Total/NA
Tetrachloroethene	870		5.0		ug/L	5		8260B	Total/NA
Trichloroethene	67		5.0		ug/L	5		8260B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Savannah

12/4/2014

11

12

4 4

Detection Summary

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: Dup-1

TestAmerica Job ID: 680-107535-1

Lab Sample ID: 680-107535-10

No Detections.

Client Sample ID: Field Blank-1 Lab Sample ID: 680-107535-11

No Detections.

5

<u>၁</u>

7

8

4.6

11

13

14

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: Trip Blank Lab Sample ID: 680-107535-1

Date Collected: 11/19/14 11:00 Matrix: Water

Date Received: 11/21/14 10:00

Method: 8260B - Volatile Orga Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0		1.0		ug/L			11/30/14 16:43	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			11/30/14 16:43	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			11/30/14 16:43	1
1,1-Dichloroethane	<1.0		1.0		ug/L			11/30/14 16:43	1
1,1-Dichloroethene	<1.0		1.0		ug/L			11/30/14 16:43	1
1,2-Dichloroethane	<1.0		1.0		ug/L			11/30/14 16:43	1
1,2-Dichloropropane	<1.0		1.0		ug/L			11/30/14 16:43	1
2-Butanone (MEK)	<10		10		ug/L			11/30/14 16:43	1
2-Hexanone	<10		10		ug/L			11/30/14 16:43	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			11/30/14 16:43	1
Acetone	<10		10		ug/L			11/30/14 16:43	1
Benzene	<1.0		1.0		ug/L			11/30/14 16:43	1
Bromoform	<1.0		1.0		ug/L			11/30/14 16:43	1
Bromomethane	<5.0		5.0		ug/L			11/30/14 16:43	1
Carbon disulfide	<2.0		2.0		ug/L			11/30/14 16:43	1
Carbon tetrachloride	<1.0		1.0		ug/L			11/30/14 16:43	1
Chlorobenzene	<1.0		1.0		ug/L			11/30/14 16:43	1
Chlorodibromomethane	<1.0		1.0		ug/L			11/30/14 16:43	1
Chloroethane	<5.0		5.0		ug/L			11/30/14 16:43	1
Chloroform	<1.0		1.0		ug/L			11/30/14 16:43	1
Chloromethane	<1.0		1.0		ug/L			11/30/14 16:43	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			11/30/14 16:43	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			11/30/14 16:43	1
Dichlorobromomethane	<1.0		1.0		ug/L			11/30/14 16:43	1
Ethylbenzene	<1.0		1.0		ug/L			11/30/14 16:43	1
Methylene Chloride	<5.0		5.0		ug/L			11/30/14 16:43	1
Styrene	<1.0		1.0		ug/L			11/30/14 16:43	1
Tetrachloroethene	<1.0		1.0		ug/L			11/30/14 16:43	1
Toluene	<1.0		1.0		ug/L			11/30/14 16:43	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			11/30/14 16:43	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			11/30/14 16:43	1
Trichloroethene	<1.0		1.0		ug/L			11/30/14 16:43	1
Vinyl chloride	<1.0		1.0		ug/L			11/30/14 16:43	1
Xylenes, Total	<2.0		2.0		ug/L			11/30/14 16:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		70 - 130			_		11/30/14 16:43	1
1,2-Dichloroethane-d4 (Surr)	77		70 - 130					11/30/14 16:43	1
Dibromofluoromethane (Surr)	74		70 - 130					11/30/14 16:43	1

4-Bromofluorobenzene (Surr) 108 70 - 130 11/30/14 16:43

Client Sample ID: MW-22A

Date Collected: 11/19/14 11:33

Lab Sample ID: 680-107535-2 Matrix: Water Date Received: 11/21/14 10:00

Method: 8260B - Volatile Organic	Compounds (GC/MS)							
Analyte	Result Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0	1.0	u	ıg/L			11/30/14 17:06	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	u	ıg/L			11/30/14 17:06	1
1,1,2-Trichloroethane	<1.0	1.0	u	ıg/L			11/30/14 17:06	1

TestAmerica Savannah

Page 9 of 36

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: MW-22A Lab Sample ID: 680-107535-2

Date Collected: 11/19/14 11:33 Matrix: Water

Date Received: 11/21/14 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	<1.0		1.0		ug/L			11/30/14 17:06	1
1,1-Dichloroethene	<1.0		1.0		ug/L			11/30/14 17:06	1
1,2-Dichloroethane	<1.0		1.0		ug/L			11/30/14 17:06	1
1,2-Dichloropropane	<1.0		1.0		ug/L			11/30/14 17:06	1
2-Butanone (MEK)	<10		10		ug/L			11/30/14 17:06	1
2-Hexanone	<10		10		ug/L			11/30/14 17:06	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			11/30/14 17:06	1
Acetone	<10		10		ug/L			11/30/14 17:06	1
Benzene	<1.0		1.0		ug/L			11/30/14 17:06	1
Bromoform	<1.0		1.0		ug/L			11/30/14 17:06	1
Bromomethane	<5.0		5.0		ug/L			11/30/14 17:06	1
Carbon disulfide	<2.0		2.0		ug/L			11/30/14 17:06	1
Carbon tetrachloride	<1.0		1.0		ug/L			11/30/14 17:06	1
Chlorobenzene	<1.0		1.0		ug/L			11/30/14 17:06	1
Chlorodibromomethane	<1.0		1.0		ug/L			11/30/14 17:06	1
Chloroethane	<5.0		5.0		ug/L			11/30/14 17:06	1
Chloroform	<1.0		1.0		ug/L			11/30/14 17:06	1
Chloromethane	<1.0		1.0		ug/L			11/30/14 17:06	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			11/30/14 17:06	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			11/30/14 17:06	1
Dichlorobromomethane	<1.0		1.0		ug/L			11/30/14 17:06	1
Ethylbenzene	<1.0		1.0		ug/L			11/30/14 17:06	1
Methylene Chloride	<5.0		5.0		ug/L			11/30/14 17:06	1
Styrene	<1.0		1.0		ug/L			11/30/14 17:06	1
Tetrachloroethene	<1.0		1.0		ug/L			11/30/14 17:06	1
Toluene	<1.0		1.0		ug/L			11/30/14 17:06	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			11/30/14 17:06	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			11/30/14 17:06	1
Trichloroethene	<1.0		1.0		ug/L			11/30/14 17:06	1
Vinyl chloride	<1.0		1.0		ug/L			11/30/14 17:06	1
Xylenes, Total	<2.0		2.0		ug/L			11/30/14 17:06	1

Surrogate	%Recovery	Qualifier	Limits	P	repared	Analyzed	Dil Fac
Toluene-d8 (Surr)	149	X	70 - 130			11/30/14 17:06	1
1,2-Dichloroethane-d4 (Surr)	88		70 - 130			11/30/14 17:06	1
Dibromofluoromethane (Surr)	97		70 - 130			11/30/14 17:06	1
4-Bromofluorobenzene (Surr)	105		70 - 130			11/30/14 17:06	1

Client Sample ID: MW-22B

Date Collected: 11/19/14 12:07

Lab Sample ID: 680-107535-3

Matrix: Water

Date Received: 11/21/14 10:00

ic Compounds (C	GC/MS)							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<1.0		1.0		ug/L			11/30/14 17:28	1
<1.0		1.0		ug/L			11/30/14 17:28	1
<1.0		1.0		ug/L			11/30/14 17:28	1
<1.0		1.0		ug/L			11/30/14 17:28	1
<1.0		1.0		ug/L			11/30/14 17:28	1
<1.0		1.0		ug/L			11/30/14 17:28	1
	Result <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	Result Qualifier RL <1.0	Result Qualifier RL MDL <1.0	Result Qualifier RL MDL Unit <1.0	Result Qualifier RL MDL Unit D <1.0	Result Qualifier RL MDL Unit D Prepared <1.0	Result Qualifier RL MDL Unit D Prepared Analyzed <1.0

TestAmerica Savannah

Page 10 of 36

3

5

8

10

12

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: MW-22B

4-Bromofluorobenzene (Surr)

Lab Sample ID: 680-107535-3 Date Collected: 11/19/14 12:07

Matrix: Water Date Received: 11/21/14 10:00

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Result Qualifier RL **MDL** Unit D Dil Fac Analyte Prepared Analyzed 1,2-Dichloropropane <1.0 1.0 11/30/14 17:28 ug/L ug/L 2-Butanone (MEK) <10 10 11/30/14 17:28 2-Hexanone <10 10 ug/L 11/30/14 17:28 4-Methyl-2-pentanone (MIBK) <10 10 ug/L 11/30/14 17:28 Acetone <10 10 ug/L 11/30/14 17:28 ug/L Benzene <1.0 10 11/30/14 17:28 Bromoform <1.0 1.0 ug/L 11/30/14 17:28 Bromomethane <5.0 5.0 ug/L 11/30/14 17:28 Carbon disulfide <2.0 2.0 ug/L 11/30/14 17:28 Carbon tetrachloride <1.0 1.0 ug/L 11/30/14 17:28 Chlorobenzene <1.0 1.0 ug/L 11/30/14 17:28 Chlorodibromomethane ug/L <1.0 1.0 11/30/14 17:28 5.0 Chloroethane <5.0 ug/L 11/30/14 17:28 Chloroform 23 1.0 ug/L 11/30/14 17:28 Chloromethane <10 1.0 ug/L 11/30/14 17:28 cis-1,2-Dichloroethene <1.0 1.0 ug/L 11/30/14 17:28 cis-1,3-Dichloropropene <1.0 1.0 ug/L 11/30/14 17:28 **Dichlorobromomethane** 1.0 ug/L 11/30/14 17:28 6.7 ug/L Ethylbenzene 1.0 11/30/14 17:28 <1.0 Methylene Chloride <5.0 5.0 ug/L 11/30/14 17:28 Styrene <1.0 1.0 ug/L 11/30/14 17:28 Tetrachloroethene 1.0 ug/L <1.0 11/30/14 17:28 Toluene <1.0 1.0 ug/L 11/30/14 17:28 trans-1,2-Dichloroethene <1.0 1.0 ug/L 11/30/14 17:28 trans-1,3-Dichloropropene <1.0 1.0 ug/L 11/30/14 17:28 Trichloroethene <1.0 1.0 ug/L 11/30/14 17:28 Vinyl chloride <1.0 1.0 ug/L 11/30/14 17:28 Xylenes, Total 2.0 <2.0 ug/L 11/30/14 17:28 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 70 - 130 104 11/30/14 17:28 1,2-Dichloroethane-d4 (Surr) 91 70 - 130 11/30/14 17:28 Dibromofluoromethane (Surr) 82 70 - 130 11/30/14 17:28

Client Sample ID: MW-21C Lab Sample ID: 680-107535-4

70 - 130

106

Date Collected: 11/19/14 13:53 Matrix: Water Date Received: 11/21/14 10:00

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0	1.0	ug/L		11/30/14 17:51	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L		11/30/14 17:51	1
1,1,2-Trichloroethane	<1.0	1.0	ug/L		11/30/14 17:51	1
1,1-Dichloroethane	<1.0	1.0	ug/L		11/30/14 17:51	1
1,1-Dichloroethene	<1.0	1.0	ug/L		11/30/14 17:51	1
1,2-Dichloroethane	<1.0	1.0	ug/L		11/30/14 17:51	1
1,2-Dichloropropane	<1.0	1.0	ug/L		11/30/14 17:51	1
2-Butanone (MEK)	<10	10	ug/L		11/30/14 17:51	1
2-Hexanone	<10	10	ug/L		11/30/14 17:51	1

TestAmerica Savannah

11/30/14 17:28

Page 11 of 36

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: MW-21C

Date Collected: 11/19/14 13:53 Date Received: 11/21/14 10:00 Lab Sample ID: 680-107535-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			11/30/14 17:51	1
Acetone	<10		10		ug/L			11/30/14 17:51	1
Benzene	<1.0		1.0		ug/L			11/30/14 17:51	1
Bromoform	<1.0		1.0		ug/L			11/30/14 17:51	1
Bromomethane	<5.0		5.0		ug/L			11/30/14 17:51	1
Carbon disulfide	<2.0		2.0		ug/L			11/30/14 17:51	1
Carbon tetrachloride	<1.0		1.0		ug/L			11/30/14 17:51	1
Chlorobenzene	<1.0		1.0		ug/L			11/30/14 17:51	1
Chlorodibromomethane	<1.0		1.0		ug/L			11/30/14 17:51	1
Chloroethane	<5.0		5.0		ug/L			11/30/14 17:51	1
Chloroform	2.3		1.0		ug/L			11/30/14 17:51	1
Chloromethane	<1.0		1.0		ug/L			11/30/14 17:51	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			11/30/14 17:51	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			11/30/14 17:51	1
Dichlorobromomethane	<1.0		1.0		ug/L			11/30/14 17:51	1
Ethylbenzene	<1.0		1.0		ug/L			11/30/14 17:51	1
Methylene Chloride	<5.0		5.0		ug/L			11/30/14 17:51	•
Styrene	<1.0		1.0		ug/L			11/30/14 17:51	1
Tetrachloroethene	<1.0		1.0		ug/L			11/30/14 17:51	1
Toluene	<1.0		1.0		ug/L			11/30/14 17:51	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			11/30/14 17:51	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			11/30/14 17:51	1
Trichloroethene	<1.0		1.0		ug/L			11/30/14 17:51	1
Vinyl chloride	<1.0		1.0		ug/L			11/30/14 17:51	1
Xylenes, Total	<2.0		2.0		ug/L			11/30/14 17:51	· · · · · · · ·

ı	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	Toluene-d8 (Surr)	94		70 - 130		11/30/14 17:51	1
	1,2-Dichloroethane-d4 (Surr)	93		70 - 130		11/30/14 17:51	1
	Dibromofluoromethane (Surr)	97		70 - 130		11/30/14 17:51	1
	4-Bromofluorobenzene (Surr)	114		70 - 130		11/30/14 17:51	1

Client Sample ID: MW-21B

Date Collected: 11/19/14 13:40

Lab Sample ID: 680-107535-5

Matrix: Water

Date Received: 11/21/14 10:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0	1.0		ug/L			11/30/14 18:14	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	1	ug/L			11/30/14 18:14	1
1,1,2-Trichloroethane	<1.0	1.0	1	ug/L			11/30/14 18:14	1
1,1-Dichloroethane	<1.0	1.0		ug/L			11/30/14 18:14	1
1,1-Dichloroethene	<1.0	1.0	1	ug/L			11/30/14 18:14	1
1,2-Dichloroethane	<1.0	1.0	1	ug/L			11/30/14 18:14	1
1,2-Dichloropropane	<1.0	1.0		ug/L			11/30/14 18:14	1
2-Butanone (MEK)	<10	10	1	ug/L			11/30/14 18:14	1
2-Hexanone	<10	10	1	ug/L			11/30/14 18:14	1
4-Methyl-2-pentanone (MIBK)	<10	10		ug/L			11/30/14 18:14	1
Acetone	<10	10	1	ug/L			11/30/14 18:14	1
Benzene	<1.0	1.0	1	ug/L			11/30/14 18:14	1

TestAmerica Savannah

Page 12 of 36

2

3

5

R

9

11

13

14

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: MW-21B

Date Collected: 11/19/14 13:40 Date Received: 11/21/14 10:00 Lab Sample ID: 680-107535-5

Matrix: Water

Method: 8260B - Volatile Orga Analyte	•	(GC/MS) (Cont Qualifier	inued) RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Bromoform		- Qualifier	1.0	ug/L		гтератец	11/30/14 18:14	— ПП Га
Bromomethane	<5.0		5.0	ug/L ug/L			11/30/14 18:14	
Carbon disulfide	<2.0		2.0	ug/L			11/30/14 18:14	
Carbon tetrachloride	<1.0		1.0	ug/L			11/30/14 18:14	
Chlorobenzene	<1.0		1.0	ug/L			11/30/14 18:14	
Chlorodibromomethane	<1.0		1.0	ug/L			11/30/14 18:14	
Chloroethane	<5.0		5.0	ug/L			11/30/14 18:14	
Chloroform	<1.0		1.0	ug/L			11/30/14 18:14	
Chloromethane	<1.0		1.0	ug/L			11/30/14 18:14	
cis-1,2-Dichloroethene	<1.0		1.0	ug/L			11/30/14 18:14	
cis-1,3-Dichloropropene	<1.0		1.0	ug/L			11/30/14 18:14	
Dichlorobromomethane	<1.0		1.0	ug/L			11/30/14 18:14	
Ethylbenzene	<1.0		1.0	ug/L			11/30/14 18:14	
Methylene Chloride	<5.0		5.0	ug/L			11/30/14 18:14	
Styrene	<1.0		1.0	ug/L			11/30/14 18:14	
Tetrachloroethene	<1.0		1.0	ug/L			11/30/14 18:14	
Toluene	<1.0		1.0	ug/L			11/30/14 18:14	
trans-1,2-Dichloroethene	<1.0		1.0	ug/L			11/30/14 18:14	
trans-1,3-Dichloropropene	<1.0		1.0	ug/L			11/30/14 18:14	
Trichloroethene	<1.0		1.0	ug/L			11/30/14 18:14	
Vinyl chloride	<1.0		1.0	ug/L			11/30/14 18:14	
Xylenes, Total	<2.0		2.0	ug/L			11/30/14 18:14	

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105	70 - 130		11/30/14 18:14	1
1,2-Dichloroethane-d4 (Surr)	88	70 - 130		11/30/14 18:14	1
Dibromofluoromethane (Surr)	99	70 - 130		11/30/14 18:14	1
4-Bromofluorobenzene (Surr)	106	70 - 130		11/30/14 18:14	1

Client Sample ID: MW-19A

Date Collected: 11/19/14 16:22

Date Received: 11/21/14 10:00

Lab Sample ID: 680-107535-6

Matrix: Water

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<5.0		5.0		ug/L			12/02/14 05:50	5
1,1,2,2-Tetrachloroethane	<5.0		5.0		ug/L			12/02/14 05:50	5
1,1,2-Trichloroethane	<5.0		5.0		ug/L			12/02/14 05:50	5
1,1-Dichloroethane	<5.0		5.0		ug/L			12/02/14 05:50	5
1,1-Dichloroethene	<5.0		5.0		ug/L			12/02/14 05:50	5
1,2-Dichloroethane	86		5.0		ug/L			12/02/14 05:50	5
1,2-Dichloropropane	<5.0		5.0		ug/L			12/02/14 05:50	5
2-Butanone (MEK)	<50		50		ug/L			12/02/14 05:50	5
2-Hexanone	<50		50		ug/L			12/02/14 05:50	5
4-Methyl-2-pentanone (MIBK)	<50		50		ug/L			12/02/14 05:50	5
Acetone	<50		50		ug/L			12/02/14 05:50	5
Benzene	1600		20		ug/L			12/02/14 15:44	20
Bromoform	<5.0		5.0		ug/L			12/02/14 05:50	5
Bromomethane	<25		25		ug/L			12/02/14 05:50	5
Carbon disulfide	<10		10		ug/L			12/02/14 05:50	5

TestAmerica Savannah

Page 13 of 36

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: MW-19A

Date Collected: 11/19/14 16:22 Date Received: 11/21/14 10:00 Lab Sample ID: 680-107535-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	<5.0		5.0		ug/L			12/02/14 05:50	5
Chlorobenzene	<5.0		5.0		ug/L			12/02/14 05:50	5
Chlorodibromomethane	<5.0		5.0		ug/L			12/02/14 05:50	5
Chloroethane	<25		25		ug/L			12/02/14 05:50	5
Chloroform	<5.0		5.0		ug/L			12/02/14 05:50	5
Chloromethane	<5.0		5.0		ug/L			12/02/14 05:50	5
cis-1,2-Dichloroethene	<5.0		5.0		ug/L			12/02/14 05:50	5
cis-1,3-Dichloropropene	<5.0		5.0		ug/L			12/02/14 05:50	5
Dichlorobromomethane	<5.0		5.0		ug/L			12/02/14 05:50	5
Ethylbenzene	87		5.0		ug/L			12/02/14 05:50	5
Methylene Chloride	<25		25		ug/L			12/02/14 05:50	5
Styrene	<5.0		5.0		ug/L			12/02/14 05:50	5
Tetrachloroethene	<5.0		5.0		ug/L			12/02/14 05:50	5
Toluene	<5.0		5.0		ug/L			12/02/14 05:50	5
trans-1,2-Dichloroethene	<5.0		5.0		ug/L			12/02/14 05:50	5
trans-1,3-Dichloropropene	<5.0		5.0		ug/L			12/02/14 05:50	5
Trichloroethene	<5.0		5.0		ug/L			12/02/14 05:50	5
Vinyl chloride	<5.0		5.0		ug/L			12/02/14 05:50	5
Xylenes, Total	180		10		ug/L			12/02/14 05:50	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98	70 - 130		12/02/14 05:50	5
Toluene-d8 (Surr)	89	70 - 130		12/02/14 15:44	20
1,2-Dichloroethane-d4 (Surr)	81	70 - 130		12/02/14 05:50	5
1,2-Dichloroethane-d4 (Surr)	105	70 - 130		12/02/14 15:44	20
Dibromofluoromethane (Surr)	87	70 - 130		12/02/14 05:50	5
Dibromofluoromethane (Surr)	109	70 - 130		12/02/14 15:44	20
4-Bromofluorobenzene (Surr)	93	70 - 130		12/02/14 05:50	5
4-Bromofluorobenzene (Surr)	98	70 - 130		12/02/14 15:44	20

Client Sample ID: MW-19D

Lab Sample ID: 680-107535-7

Date Collected: 11/19/14 16:14
Date Received: 11/21/14 10:00
Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0		1.0		ug/L			11/30/14 18:59	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			11/30/14 18:59	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			11/30/14 18:59	1
1,1-Dichloroethane	<1.0		1.0		ug/L			11/30/14 18:59	1
1,1-Dichloroethene	<1.0		1.0		ug/L			11/30/14 18:59	1
1,2-Dichloroethane	<1.0		1.0		ug/L			11/30/14 18:59	1
1,2-Dichloropropane	<1.0		1.0		ug/L			11/30/14 18:59	1
2-Butanone (MEK)	<10		10		ug/L			11/30/14 18:59	1
2-Hexanone	<10		10		ug/L			11/30/14 18:59	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			11/30/14 18:59	1
Acetone	<10		10		ug/L			11/30/14 18:59	1
Benzene	<1.0		1.0		ug/L			11/30/14 18:59	1
Bromoform	<1.0		1.0		ug/L			11/30/14 18:59	1
Bromomethane	<5.0		5.0		ug/L			11/30/14 18:59	1

TestAmerica Savannah

Page 14 of 36

2

3

5

8

10

12

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: MW-19D Lab Sample ID: 680-107535-7

Date Collected: 11/19/14 16:14 Matrix: Water Date Received: 11/21/14 10:00

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon disulfide	<2.0		2.0		ug/L			11/30/14 18:59	1
Carbon tetrachloride	<1.0		1.0		ug/L			11/30/14 18:59	1
Chlorobenzene	<1.0		1.0		ug/L			11/30/14 18:59	1
Chlorodibromomethane	<1.0		1.0		ug/L			11/30/14 18:59	1
Chloroethane	<5.0		5.0		ug/L			11/30/14 18:59	1
Chloroform	11		1.0		ug/L			11/30/14 18:59	1
Chloromethane	<1.0		1.0		ug/L			11/30/14 18:59	1
cis-1,2-Dichloroethene	13		1.0		ug/L			11/30/14 18:59	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			11/30/14 18:59	1
Dichlorobromomethane	<1.0		1.0		ug/L			11/30/14 18:59	1
Ethylbenzene	<1.0		1.0		ug/L			11/30/14 18:59	1
Methylene Chloride	<5.0		5.0		ug/L			11/30/14 18:59	1
Styrene	<1.0		1.0		ug/L			11/30/14 18:59	1
Tetrachloroethene	94		1.0		ug/L			11/30/14 18:59	1
Toluene	<1.0		1.0		ug/L			11/30/14 18:59	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			11/30/14 18:59	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			11/30/14 18:59	1
Trichloroethene	7.1		1.0		ug/L			11/30/14 18:59	1
Vinyl chloride	<1.0		1.0		ug/L			11/30/14 18:59	1
Xylenes, Total	<2.0		2.0		ug/L			11/30/14 18:59	1

Surrogate	%Recovery Qualit	ier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105	70 - 130		11/30/14 18:59	1
1,2-Dichloroethane-d4 (Surr)	101	70 - 130		11/30/14 18:59	1
Dibromofluoromethane (Surr)	101	70 - 130		11/30/14 18:59	1
4-Bromofluorobenzene (Surr)	123	70 - 130		11/30/14 18:59	1

Client Sample ID: MW-19C Lab Sample ID: 680-107535-8 Date Collected: 11/19/14 17:29 Matrix: Water

Date Received: 11/21/14 10:00

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<2.0		2.0		ug/L			12/02/14 16:07	2
1,1,2,2-Tetrachloroethane	<2.0		2.0		ug/L			12/02/14 16:07	2
1,1,2-Trichloroethane	<2.0		2.0		ug/L			12/02/14 16:07	2
1,1-Dichloroethane	<2.0		2.0		ug/L			12/02/14 16:07	2
1,1-Dichloroethene	<2.0		2.0		ug/L			12/02/14 16:07	2
1,2-Dichloroethane	<2.0		2.0		ug/L			12/02/14 16:07	2
1,2-Dichloropropane	<2.0		2.0		ug/L			12/02/14 16:07	2
2-Butanone (MEK)	<20		20		ug/L			12/02/14 16:07	2
2-Hexanone	<20		20		ug/L			12/02/14 16:07	2
4-Methyl-2-pentanone (MIBK)	<20		20		ug/L			12/02/14 16:07	2
Acetone	<20		20		ug/L			12/02/14 16:07	2
Benzene	<2.0		2.0		ug/L			12/02/14 16:07	2
Bromoform	<2.0		2.0		ug/L			12/02/14 16:07	2
Bromomethane	<10		10		ug/L			12/02/14 16:07	2
Carbon disulfide	<4.0		4.0		ug/L			12/02/14 16:07	2
Carbon tetrachloride	<2.0		2.0		ug/L			12/02/14 16:07	2
Chlorobenzene	<2.0		2.0		ug/L			12/02/14 16:07	2

Page 15 of 36

Client: EHS Support, LLC Project/Site: Ashland Alterman

Lab Sample ID: 680-107535-8 Client Sample ID: MW-19C

Date Collected: 11/19/14 17:29 Matrix: Water Date Received: 11/21/14 10:00

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Chlorodibromomethane <2.0 2.0 ug/L 12/02/14 16:07 2 Chloroethane <10 10 ug/L 12/02/14 16:07 Chloroform <2.0 2.0 ug/L 12/02/14 16:07 2 Chloromethane <2.0 2.0 ug/L 12/02/14 16:07 2 2 cis-1,2-Dichloroethene 33 2.0 ug/L 12/02/14 16:07 cis-1,3-Dichloropropene <2.0 2.0 ug/L 12/02/14 16:07 2 Dichlorobromomethane <2.0 2.0 ug/L 12/02/14 16:07 2 Ethylbenzene <2.0 2.0 ug/L 12/02/14 16:07 2 2 Methylene Chloride <10 10 ug/L 12/02/14 16:07 2.0 ug/L 2 Styrene <2.0 12/02/14 16:07 2.0 ug/L 2 Tetrachloroethene 290 12/02/14 16:07 Toluene <2.0 2.0 ug/L 12/02/14 16:07 2 2 trans-1,2-Dichloroethene <2.0 2.0 ug/L 12/02/14 16:07 trans-1,3-Dichloropropene <2.0 2.0 ug/L 12/02/14 16:07 2 2.0 ug/L 2 12/02/14 16:07 **Trichloroethene** 18 2 Vinyl chloride <2.0 2.0 ug/L 12/02/14 16:07 Xylenes, Total <4.0 4.0 ug/L 12/02/14 16:07 Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 12/02/14 16:07 Toluene-d8 (Surr) 89 70 - 130 114 70 - 130 12/02/14 16:07 2 1,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr) 70 - 130 12/02/14 16:07 2 114 4-Bromofluorobenzene (Surr) 99 70 - 130 12/02/14 16:07

Client Sample ID: MW-19B Lab Sample ID: 680-107535-9

Date Collected: 11/19/14 18:07 **Matrix: Water** Date Received: 11/21/14 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<5.0		5.0		ug/L			12/02/14 06:12	5
1,1,2,2-Tetrachloroethane	<5.0		5.0		ug/L			12/02/14 06:12	5
1,1,2-Trichloroethane	<5.0		5.0		ug/L			12/02/14 06:12	5
1,1-Dichloroethane	<5.0		5.0		ug/L			12/02/14 06:12	5
1,1-Dichloroethene	<5.0		5.0		ug/L			12/02/14 06:12	5
1,2-Dichloroethane	<5.0		5.0		ug/L			12/02/14 06:12	5
1,2-Dichloropropane	<5.0		5.0		ug/L			12/02/14 06:12	5
2-Butanone (MEK)	<50		50		ug/L			12/02/14 06:12	5
2-Hexanone	<50		50		ug/L			12/02/14 06:12	5
4-Methyl-2-pentanone (MIBK)	<50		50		ug/L			12/02/14 06:12	5
Acetone	<50		50		ug/L			12/02/14 06:12	5
Benzene	<5.0		5.0		ug/L			12/02/14 06:12	5
Bromoform	<5.0		5.0		ug/L			12/02/14 06:12	5
Bromomethane	<25		25		ug/L			12/02/14 06:12	5
Carbon disulfide	<10		10		ug/L			12/02/14 06:12	5
Carbon tetrachloride	<5.0		5.0		ug/L			12/02/14 06:12	5
Chlorobenzene	<5.0		5.0		ug/L			12/02/14 06:12	5
Chlorodibromomethane	<5.0		5.0		ug/L			12/02/14 06:12	5
Chloroethane	<25		25		ug/L			12/02/14 06:12	5
Chloroform	<5.0		5.0		ug/L			12/02/14 06:12	5

TestAmerica Savannah

Page 16 of 36

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: MW-19B

Date Collected: 11/19/14 18:07 Date Received: 11/21/14 10:00 Lab Sample ID: 680-107535-9

Matrix: Water

Method: 8260B - Volatile Orga	nic Compounds	(GC/MS) (Co	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	<5.0		5.0		ug/L			12/02/14 06:12	5
cis-1,2-Dichloroethene	100		5.0		ug/L			12/02/14 06:12	5
cis-1,3-Dichloropropene	<5.0		5.0		ug/L			12/02/14 06:12	5
Dichlorobromomethane	<5.0		5.0		ug/L			12/02/14 06:12	5
Ethylbenzene	<5.0		5.0		ug/L			12/02/14 06:12	5
Methylene Chloride	<25		25		ug/L			12/02/14 06:12	5
Styrene	<5.0		5.0		ug/L			12/02/14 06:12	5
Tetrachloroethene	870		5.0		ug/L			12/02/14 06:12	5
Toluene	<5.0		5.0		ug/L			12/02/14 06:12	5
trans-1,2-Dichloroethene	<5.0		5.0		ug/L			12/02/14 06:12	5
trans-1,3-Dichloropropene	<5.0		5.0		ug/L			12/02/14 06:12	5
Trichloroethene	67		5.0		ug/L			12/02/14 06:12	5
Vinyl chloride	<5.0		5.0		ug/L			12/02/14 06:12	5
Xylenes, Total	<10		10		ug/L			12/02/14 06:12	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130			_		12/02/14 06:12	5
1,2-Dichloroethane-d4 (Surr)	81		70 - 130					12/02/14 06:12	5
Dibromofluoromethane (Surr)	86		70 - 130					12/02/14 06:12	5
4-Bromofluorobenzene (Surr)	93		70 - 130					12/02/14 06:12	5

Client Sample ID: Dup-1

Date Collected: 11/19/14 00:00

Date Received: 11/21/14 10:00

Lab Sample ID: 680-107535-10

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	t	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0	1.0	ug/L	_			12/02/14 16:29	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	_			12/02/14 16:29	1
1,1,2-Trichloroethane	<1.0	1.0	ug/L	_			12/02/14 16:29	1
1,1-Dichloroethane	<1.0	1.0	ug/L	-			12/02/14 16:29	1
1,1-Dichloroethene	<1.0	1.0	ug/L	_			12/02/14 16:29	1
1,2-Dichloroethane	<1.0	1.0	ug/L	_			12/02/14 16:29	1
1,2-Dichloropropane	<1.0	1.0	ug/L	_			12/02/14 16:29	1
2-Butanone (MEK)	<10	10	ug/L	_			12/02/14 16:29	1
2-Hexanone	<10	10	ug/L	_			12/02/14 16:29	1
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L				12/02/14 16:29	1
Acetone	<10	10	ug/L	_			12/02/14 16:29	1
Benzene	<1.0	1.0	ug/L	_			12/02/14 16:29	1
Bromoform	<1.0	1.0	ug/L	_			12/02/14 16:29	1
Bromomethane	<5.0	5.0	ug/L	_			12/02/14 16:29	1
Carbon disulfide	<2.0	2.0	ug/L	_			12/02/14 16:29	1
Carbon tetrachloride	<1.0	1.0	ug/L	_			12/02/14 16:29	1
Chlorobenzene	<1.0	1.0	ug/L	_			12/02/14 16:29	1
Chlorodibromomethane	<1.0	1.0	ug/L	_			12/02/14 16:29	1
Chloroethane	<5.0	5.0	ug/L				12/02/14 16:29	1
Chloroform	<1.0	1.0	ug/L	_			12/02/14 16:29	1
Chloromethane	<1.0	1.0	ug/L	_			12/02/14 16:29	1
cis-1,2-Dichloroethene	<1.0	1.0	ug/L	_			12/02/14 16:29	1
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	_			12/02/14 16:29	1

TestAmerica Savannah

Page 17 of 36

3

5

8

10

12

Project/Site: Ashland Alterman

Client: EHS Support, LLC

Client Sample ID: Dup-1 Lab Sample ID: 680-107535-10

Date Collected: 11/19/14 00:00 Matrix: Water
Date Received: 11/21/14 10:00

Method: 8260B - Volatile Orga	nic Compounds ((GC/MS) (Co	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorobromomethane	<1.0		1.0		ug/L			12/02/14 16:29	1
Ethylbenzene	<1.0		1.0		ug/L			12/02/14 16:29	1
Methylene Chloride	<5.0		5.0		ug/L			12/02/14 16:29	1
Styrene	<1.0		1.0		ug/L			12/02/14 16:29	1
Tetrachloroethene	<1.0		1.0		ug/L			12/02/14 16:29	1
Toluene	<1.0		1.0		ug/L			12/02/14 16:29	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			12/02/14 16:29	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			12/02/14 16:29	1
Trichloroethene	<1.0		1.0		ug/L			12/02/14 16:29	1
Vinyl chloride	<1.0		1.0		ug/L			12/02/14 16:29	1
Xylenes, Total	<2.0		2.0		ug/L			12/02/14 16:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		70 - 130			-		12/02/14 16:29	1
1,2-Dichloroethane-d4 (Surr)	97		70 - 130					12/02/14 16:29	1
Dibromofluoromethane (Surr)	104		70 - 130					12/02/14 16:29	1
4-Bromofluorobenzene (Surr)	104		70 - 130					12/02/14 16:29	1

Client Sample ID: Field Blank-1 Lab Sample ID: 680-107535-11

Date Collected: 11/19/14 14:30 Matrix: Water

Date Received: 11/21/14 10:00

Analyte	Result Qu	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0	1.0	ug/L			12/02/14 00:11	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L			12/02/14 00:11	1
1,1,2-Trichloroethane	<1.0	1.0	ug/L			12/02/14 00:11	1
1,1-Dichloroethane	<1.0	1.0	ug/L			12/02/14 00:11	1
1,1-Dichloroethene	<1.0	1.0	ug/L			12/02/14 00:11	1
1,2-Dichloroethane	<1.0	1.0	ug/L			12/02/14 00:11	1
1,2-Dichloropropane	<1.0	1.0	ug/L			12/02/14 00:11	1
2-Butanone (MEK)	<10	10	ug/L			12/02/14 00:11	1
2-Hexanone	<10	10	ug/L			12/02/14 00:11	1
4-Methyl-2-pentanone (MIBK)	<10	10	ug/L			12/02/14 00:11	1
Acetone	<10	10	ug/L			12/02/14 00:11	1
Benzene	<1.0	1.0	ug/L			12/02/14 00:11	1
Bromoform	<1.0	1.0	ug/L			12/02/14 00:11	1
Bromomethane	<5.0	5.0	ug/L			12/02/14 00:11	1
Carbon disulfide	<2.0	2.0	ug/L			12/02/14 00:11	1
Carbon tetrachloride	<1.0	1.0	ug/L			12/02/14 00:11	1
Chlorobenzene	<1.0	1.0	ug/L			12/02/14 00:11	1
Chlorodibromomethane	<1.0	1.0	ug/L			12/02/14 00:11	1
Chloroethane	<5.0	5.0	ug/L			12/02/14 00:11	1
Chloroform	<1.0	1.0	ug/L			12/02/14 00:11	1
Chloromethane	<1.0	1.0	ug/L			12/02/14 00:11	1
cis-1,2-Dichloroethene	<1.0	1.0	ug/L			12/02/14 00:11	1
cis-1,3-Dichloropropene	<1.0	1.0	ug/L			12/02/14 00:11	1
Dichlorobromomethane	<1.0	1.0	ug/L			12/02/14 00:11	1
Ethylbenzene	<1.0	1.0	ug/L			12/02/14 00:11	1
Methylene Chloride	<5.0	5.0	ug/L			12/02/14 00:11	1

TestAmerica Savannah

Page 18 of 36

2

3

4

6

8

11

12

14

Client Sample Results

Client: EHS Support, LLC Project/Site: Ashland Alterman

Date Received: 11/21/14 10:00

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

TestAmerica Job ID: 680-107535-1

12/02/14 00:11

12/02/14 00:11

12/02/14 00:11

Lab Sample ID: 680-107535-11

Matrix: Water

Client Sample ID: Field Blank-1 Date Collected: 11/19/14 14:30

Method: 8260B - Volatile Org	janic Compounds (GC/MS)	(Continued)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<1.0	1.0		ug/L			12/02/14 00:11	1
Tetrachloroethene	<1.0	1.0		ug/L			12/02/14 00:11	1
Toluene	<1.0	1.0		ug/L			12/02/14 00:11	1
trans-1,2-Dichloroethene	<1.0	1.0		ug/L			12/02/14 00:11	1
trans-1,3-Dichloropropene	<1.0	1.0		ug/L			12/02/14 00:11	1
Trichloroethene	<1.0	1.0		ug/L			12/02/14 00:11	1
Vinyl chloride	<1.0	1.0		ug/L			12/02/14 00:11	1
Xylenes, Total	<2.0	2.0		ug/L			12/02/14 00:11	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	70 - 130			-		12/02/14 00:11	

70 - 130

70 - 130

70 - 130

82

89

Surrogate Summary

Client: EHS Support, LLC Project/Site: Ashland Alterman

TestAmerica Job ID: 680-107535-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Su	rrogate Recov	ery (Acce
		TOL	12DCE	DBFM	BFB	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)	
680-107535-1	Trip Blank	106	77	74	108	
680-107535-2	MW-22A	149 X	88	97	105	
680-107535-3	MW-22B	104	91	82	106	
680-107535-4	MW-21C	94	93	97	114	
680-107535-5	MW-21B	105	88	99	106	
680-107535-6	MW-19A	98	81	87	93	
680-107535-6	MW-19A	89	105	109	98	
680-107535-7	MW-19D	105	101	101	123	
680-107535-8	MW-19C	89	114	114	99	
680-107535-9	MW-19B	99	81	86	93	
680-107535-10	Dup-1	94	97	104	104	
680-107535-11	Field Blank-1	97	82	89	93	
LCS 680-360958/4	Lab Control Sample	105	84	99	108	
LCS 680-361167/4	Lab Control Sample	94	95	92	91	
LCS 680-361179/4	Lab Control Sample	104	104	108	96	
LCSD 680-360958/5	Lab Control Sample Dup	105	85	99	102	
LCSD 680-361167/5	Lab Control Sample Dup	94	94	92	92	
LCSD 680-361179/5	Lab Control Sample Dup	98	91	98	90	
MB 680-360958/10	Method Blank	98	88	96	103	
MB 680-361167/10	Method Blank	98	81	89	93	
MB 680-361179/9	Method Blank	86	100	98	92	

Surrogate Legend

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TestAmerica Savannah

Page 20 of 36

12/4/2014

Client: EHS Support, LLC Project/Site: Ashland Alterman

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-360958/10

Matrix: Water

Analysis Batch: 360958

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0		1.0		ug/L			11/30/14 12:13	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			11/30/14 12:13	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			11/30/14 12:13	1
1,1-Dichloroethane	<1.0		1.0		ug/L			11/30/14 12:13	1
1,1-Dichloroethene	<1.0		1.0		ug/L			11/30/14 12:13	1
1,2-Dichloroethane	<1.0		1.0		ug/L			11/30/14 12:13	1
1,2-Dichloropropane	<1.0		1.0		ug/L			11/30/14 12:13	1
2-Butanone (MEK)	<10		10		ug/L			11/30/14 12:13	1
2-Hexanone	<10		10		ug/L			11/30/14 12:13	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			11/30/14 12:13	1
Acetone	<10		10		ug/L			11/30/14 12:13	1
Benzene	<1.0		1.0		ug/L			11/30/14 12:13	1
Bromoform	<1.0		1.0		ug/L			11/30/14 12:13	1
Bromomethane	<5.0		5.0		ug/L			11/30/14 12:13	1
Carbon disulfide	<2.0		2.0		ug/L			11/30/14 12:13	1
Carbon tetrachloride	<1.0		1.0		ug/L			11/30/14 12:13	1
Chlorobenzene	<1.0		1.0		ug/L			11/30/14 12:13	1
Chlorodibromomethane	<1.0		1.0		ug/L			11/30/14 12:13	1
Chloroethane	<5.0		5.0		ug/L			11/30/14 12:13	1
Chloroform	<1.0		1.0		ug/L			11/30/14 12:13	1
Chloromethane	<1.0		1.0		ug/L			11/30/14 12:13	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			11/30/14 12:13	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			11/30/14 12:13	1
Dichlorobromomethane	<1.0		1.0		ug/L			11/30/14 12:13	1
Ethylbenzene	<1.0		1.0		ug/L			11/30/14 12:13	1
Methylene Chloride	<5.0		5.0		ug/L			11/30/14 12:13	1
Styrene	<1.0		1.0		ug/L			11/30/14 12:13	1
Tetrachloroethene	<1.0		1.0		ug/L			11/30/14 12:13	1
Toluene	<1.0		1.0		ug/L			11/30/14 12:13	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			11/30/14 12:13	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			11/30/14 12:13	1
Trichloroethene	<1.0		1.0		ug/L			11/30/14 12:13	1
Vinyl chloride	<1.0		1.0		ug/L			11/30/14 12:13	1
Xylenes, Total	<2.0		2.0		ug/L			11/30/14 12:13	1

	MB	MB				
Surrogate	%Recovery	Qualifier I	imits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		0 - 130		11/30/14 12:13	1
1,2-Dichloroethane-d4 (Surr)	88	7	0 - 130		11/30/14 12:13	1
Dibromofluoromethane (Surr)	96	7	'0 ₋ 130		11/30/14 12:13	1
4-Bromofluorobenzene (Surr)	103	7	0 - 130		11/30/14 12:13	1

Lab Sample ID: LCS 680-360958/4

Matrix: Water

Analysis Batch: 360958

Client Sample ID:	Lab Control Sample
1	Prep Type: Total/NA

1			Spike	LCS	LCS				%Rec.	
	Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
	1,1,1-Trichloroethane		50.0	50.4		ug/L		101	76 - 126	
	1,1,2,2-Tetrachloroethane		50.0	50.6		ug/L		101	71 _ 127	

TestAmerica Savannah

Page 21 of 36

12/4/2014

Spike

LCS LCS

TestAmerica Job ID: 680-107535-1

Client: EHS Support, LLC Project/Site: Ashland Alterman

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-360958/4

Matrix: Water

Analysis Batch: 360958

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec.

	Opike	LUU	LUG			/orcec.	
Analyte	Added	Result	Qualifier Unit	D %	Rec	Limits	
1,1,2-Trichloroethane	50.0	45.1	ug/L		90	69 - 127	
1,1-Dichloroethane	50.0	49.1	ug/L		98	69 _ 132	
1,1-Dichloroethene	50.0	46.6	ug/L		93	73 - 134	
1,2-Dichloroethane	50.0	43.5	ug/L		87	75 - 120	
1,2-Dichloropropane	50.0	47.8	ug/L		96	71 - 126	
2-Butanone (MEK)	250	236	ug/L		95	55 - 142	
2-Hexanone	250	215	ug/L		86	52 - 149	
4-Methyl-2-pentanone (MIBK)	250	246	ug/L		98	51 - 143	
Acetone	250	237	ug/L		95	39 - 162	
Benzene	50.0	47.2	ug/L		94	74 - 123	
Bromoform	50.0	43.7	ug/L		87	60 - 134	
Bromomethane	50.0	50.3	ug/L		101	10 - 171	
Carbon disulfide	50.0	46.1	ug/L		92	63 - 142	
Carbon tetrachloride	50.0	51.1	ug/L		102	70 - 131	
Chlorobenzene	50.0	50.0	ug/L		100	79 - 120	
Chlorodibromomethane	50.0	41.2	ug/L		82	63 - 134	
Chloroethane	50.0	43.7	ug/L		87	47 - 148	
Chloroform	50.0	46.5	ug/L		93	76 - 128	
Chloromethane	50.0	37.6	ug/L		75	47 - 151	
cis-1,2-Dichloroethene	50.0	50.0	ug/L		100	78 - 127	
cis-1,3-Dichloropropene	50.0	49.3	ug/L		99	73 - 128	
Dichlorobromomethane	50.0	48.8	ug/L		98	72 _ 129	
Ethylbenzene	50.0	52.2	ug/L		104	78 ₋ 125	
Methylene Chloride	50.0	47.6	ug/L		95	79 - 124	
Styrene	50.0	52.1	ug/L		104	75 _ 129	
Tetrachloroethene	50.0	46.0	ug/L		92	77 - 128	
Toluene	50.0	53.4	ug/L		107	77 _ 125	
trans-1,2-Dichloroethene	50.0	49.9	ug/L		100	78 _ 130	
trans-1,3-Dichloropropene	50.0	49.2	ug/L		98	72 - 127	
Trichloroethene	50.0	51.7	ug/L		103	80 - 120	
Vinyl chloride	50.0	40.2	ug/L		80	58 - 141	
Xylenes, Total	100	107	ug/L		107	80 - 124	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		70 - 130
1,2-Dichloroethane-d4 (Surr)	84		70 - 130
Dibromofluoromethane (Surr)	99		70 - 130
4-Bromofluorobenzene (Surr)	108		70 - 130

Lab Sample ID: LCSD 680-360958/5

Matrix: Water

Analysis Batch: 360958

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier Un	it D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	50.0	48.6	ug/	L –	97	76 - 126	4	30
1,1,2,2-Tetrachloroethane	50.0	52.0	ug/	L	104	71 _ 127	3	30
1,1,2-Trichloroethane	50.0	50.5	ug/	L	101	69 - 127	11	30
1,1-Dichloroethane	50.0	42.8	ug/	L	86	69 - 132	14	30

TestAmerica Savannah

Page 22 of 36

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Lab Sample ID: LCSD 680-360958/5

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water

Analysis Batch: 360958

	Spike						%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	50.0	45.9		ug/L		92	73 - 134	1	30
1,2-Dichloroethane	50.0	44.7		ug/L		89	75 - 120	3	30
1,2-Dichloropropane	50.0	51.4		ug/L		103	71 - 126	7	30
2-Butanone (MEK)	250	242		ug/L		97	55 - 142	2	30
2-Hexanone	250	233		ug/L		93	52 - 149	8	30
4-Methyl-2-pentanone (MIBK)	250	236		ug/L		94	51 - 143	4	30
Acetone	250	260		ug/L		104	39 - 162	9	50
Benzene	50.0	51.3		ug/L		103	74 - 123	8	30
Bromoform	50.0	50.5		ug/L		101	60 - 134	15	30
Bromomethane	50.0	45.1		ug/L		90	10 - 171	11	50
Carbon disulfide	50.0	47.5		ug/L		95	63 - 142	3	30
Carbon tetrachloride	50.0	50.9		ug/L		102	70 - 131	0	30
Chlorobenzene	50.0	51.6		ug/L		103	79 - 120	3	30
Chlorodibromomethane	50.0	47.5		ug/L		95	63 - 134	14	50
Chloroethane	50.0	33.8		ug/L		68	47 - 148	26	40
Chloroform	50.0	46.4		ug/L		93	76 - 128	0	30
Chloromethane	50.0	36.5		ug/L		73	47 - 151	3	30
cis-1,2-Dichloroethene	50.0	49.0		ug/L		98	78 - 127	2	30
cis-1,3-Dichloropropene	50.0	51.0		ug/L		102	73 - 128	3	30
Dichlorobromomethane	50.0	48.5		ug/L		97	72 - 129	1	30
Ethylbenzene	50.0	53.0		ug/L		106	78 - 125	1	30
Methylene Chloride	50.0	47.6		ug/L		95	79 - 124	0	30
Styrene	50.0	53.3		ug/L		107	75 - 129	2	30
Tetrachloroethene	50.0	53.6		ug/L		107	77 - 128	15	30
Toluene	50.0	51.4		ug/L		103	77 - 125	4	30
trans-1,2-Dichloroethene	50.0	42.5		ug/L		85	78 - 130	16	30
trans-1,3-Dichloropropene	50.0	47.5		ug/L		95	72 _ 127	3	50
Trichloroethene	50.0	51.8		ug/L		104	80 - 120	0	30
Vinyl chloride	50.0	37.8		ug/L		76	58 - 141	6	30
Xylenes, Total	100	106		ug/L		106	80 - 124	1	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		70 - 130
1,2-Dichloroethane-d4 (Surr)	85		70 - 130
Dibromofluoromethane (Surr)	99		70 - 130
4-Bromofluorobenzene (Surr)	102		70 - 130

Lab Sample ID: MB 680-361167/10

Matrix: Water Analysis Batch: 361167

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0	1.0	ug/L		12/01/14 23:07	1
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L		12/01/14 23:07	1
1,1,2-Trichloroethane	<1.0	1.0	ug/L		12/01/14 23:07	1
1,1-Dichloroethane	<1.0	1.0	ug/L		12/01/14 23:07	1
1,1-Dichloroethene	<1.0	1.0	ug/L		12/01/14 23:07	1
1,2-Dichloroethane	<1.0	1.0	ug/L		12/01/14 23:07	1

TestAmerica Savannah

Client Sample ID: Method Blank

Prep Type: Total/NA

Page 23 of 36

9

3

6

1 1

12

Client: EHS Support, LLC Project/Site: Ashland Alterman

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-361167/10

Matrix: Water

Analysis Batch: 361167

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Buton. 551161									
		MB	-			_			5
Analyte		Qualifier	RL _	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	<1.0		1.0		ug/L			12/01/14 23:07	
2-Butanone (MEK)	<10		10		ug/L			12/01/14 23:07	1
2-Hexanone	<10		10		ug/L			12/01/14 23:07	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			12/01/14 23:07	1
Acetone	<10		10		ug/L			12/01/14 23:07	1
Benzene	<1.0		1.0		ug/L			12/01/14 23:07	1
Bromoform	<1.0		1.0		ug/L			12/01/14 23:07	1
Bromomethane	<5.0		5.0		ug/L			12/01/14 23:07	1
Carbon disulfide	<2.0		2.0		ug/L			12/01/14 23:07	1
Carbon tetrachloride	<1.0		1.0		ug/L			12/01/14 23:07	1
Chlorobenzene	<1.0		1.0		ug/L			12/01/14 23:07	1
Chlorodibromomethane	<1.0		1.0		ug/L			12/01/14 23:07	1
Chloroethane	<5.0		5.0		ug/L			12/01/14 23:07	1
Chloroform	<1.0		1.0		ug/L			12/01/14 23:07	1
Chloromethane	<1.0		1.0		ug/L			12/01/14 23:07	1
cis-1,2-Dichloroethene	<1.0		1.0		ug/L			12/01/14 23:07	1
cis-1,3-Dichloropropene	<1.0		1.0		ug/L			12/01/14 23:07	1
Dichlorobromomethane	<1.0		1.0		ug/L			12/01/14 23:07	1
Ethylbenzene	<1.0		1.0		ug/L			12/01/14 23:07	1
Methylene Chloride	<5.0		5.0		ug/L			12/01/14 23:07	1
Styrene	<1.0		1.0		ug/L			12/01/14 23:07	1
Tetrachloroethene	<1.0		1.0		ug/L			12/01/14 23:07	1
Toluene	<1.0		1.0		ug/L			12/01/14 23:07	1
trans-1,2-Dichloroethene	<1.0		1.0		ug/L			12/01/14 23:07	1
trans-1,3-Dichloropropene	<1.0		1.0		ug/L			12/01/14 23:07	1
Trichloroethene	<1.0		1.0		ug/L			12/01/14 23:07	1
Vinyl chloride	<1.0		1.0		ug/L			12/01/14 23:07	1
•					-				

MB MB	

<2.0

	IND	MD					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	98	 -	70 - 130	 	12/01/14 23:07	1	
1,2-Dichloroethane-d4 (Surr)	81		70 - 130		12/01/14 23:07	1	
Dibromofluoromethane (Surr)	89		70 - 130		12/01/14 23:07	1	
4-Bromofluorobenzene (Surr)	93		70 - 130		12/01/14 23:07	1	

Lab Sample ID: LCS 680-361167/4

Matrix: Water

Xylenes, Total

Analysis Batch: 361167

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

12/01/14 23:07

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	50.0	47.0		ug/L		94	76 - 126	
1,1,2,2-Tetrachloroethane	50.0	46.2		ug/L		92	71 _ 127	
1,1,2-Trichloroethane	50.0	45.7		ug/L		91	69 - 127	
1,1-Dichloroethane	50.0	47.1		ug/L		94	69 - 132	
1,1-Dichloroethene	50.0	46.9		ug/L		94	73 - 134	
1,2-Dichloroethane	50.0	49.1		ug/L		98	75 - 120	
1,2-Dichloropropane	50.0	46.6		ug/L		93	71 - 126	
2-Butanone (MEK)	250	241		ug/L		96	55 - 142	

TestAmerica Savannah

12/4/2014

Page 24 of 36

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-361167/4

Matrix: Water

Analysis Batch: 361167

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2-Hexanone	250	238		ug/L		95	52 - 149	
4-Methyl-2-pentanone (MIBK)	250	238		ug/L		95	51 - 143	
Acetone	250	262		ug/L		105	39 - 162	
Benzene	50.0	46.3		ug/L		93	74 - 123	
Bromoform	50.0	44.4		ug/L		89	60 - 134	
Bromomethane	50.0	39.4		ug/L		79	10 - 171	
Carbon disulfide	50.0	47.8		ug/L		96	63 - 142	
Carbon tetrachloride	50.0	47.0		ug/L		94	70 - 131	
Chlorobenzene	50.0	48.1		ug/L		96	79 - 120	
Chlorodibromomethane	50.0	45.0		ug/L		90	63 - 134	
Chloroethane	50.0	45.4		ug/L		91	47 - 148	
Chloroform	50.0	46.2		ug/L		92	76 - 128	
Chloromethane	50.0	46.0		ug/L		92	47 - 151	
cis-1,2-Dichloroethene	50.0	47.0		ug/L		94	78 - 127	
cis-1,3-Dichloropropene	50.0	46.0		ug/L		92	73 - 128	
Dichlorobromomethane	50.0	45.4		ug/L		91	72 - 129	
Ethylbenzene	50.0	47.6		ug/L		95	78 ₋ 125	
Methylene Chloride	50.0	45.0		ug/L		90	79 - 124	
Styrene	50.0	46.9		ug/L		94	75 - 129	
Tetrachloroethene	50.0	46.8		ug/L		94	77 - 128	
Toluene	50.0	46.6		ug/L		93	77 - 125	
trans-1,2-Dichloroethene	50.0	44.9		ug/L		90	78 ₋ 130	
trans-1,3-Dichloropropene	50.0	45.7		ug/L		91	72 ₋ 127	
Trichloroethene	50.0	45.9		ug/L		92	80 - 120	
Vinyl chloride	50.0	47.7		ug/L		95	58 ₋ 141	
Xylenes, Total	100	95.5		ug/L		96	80 - 124	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	94		70 - 130
1,2-Dichloroethane-d4 (Surr)	95		70 - 130
Dibromofluoromethane (Surr)	92		70 - 130
4-Bromofluorobenzene (Surr)	91		70 - 130

Lab Sample ID: LCSD 680-361167/5

Matrix: Water

Analysis Batch: 361167

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	50.0	47.3		ug/L		95	76 - 126	1	30
1,1,2,2-Tetrachloroethane	50.0	45.6		ug/L		91	71 - 127	1	30
1,1,2-Trichloroethane	50.0	46.7		ug/L		93	69 - 127	2	30
1,1-Dichloroethane	50.0	47.3		ug/L		95	69 - 132	0	30
1,1-Dichloroethene	50.0	47.2		ug/L		94	73 - 134	1	30
1,2-Dichloroethane	50.0	48.3		ug/L		97	75 - 120	2	30
1,2-Dichloropropane	50.0	46.2		ug/L		92	71 - 126	1	30
2-Butanone (MEK)	250	245		ug/L		98	55 - 142	2	30
2-Hexanone	250	240		ug/L		96	52 - 149	1	30
4-Methyl-2-pentanone (MIBK)	250	239		ug/L		96	51 - 143	1	30

TestAmerica Savannah

Page 25 of 36

4

5

7

9

11

12

11

Client: EHS Support, LLC Project/Site: Ashland Alterman

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-361167/5

Matrix: Water

Analysis Batch: 361167

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analyte Added Acetone 250 Benzene 50.0 Bromoform 50.0 Bromomethane 50.0 Carbon disulfide 50.0	Result 263 46.7 44.8	$\begin{array}{c} \textbf{Qualifier} & \textbf{Unit} \\ \hline \textbf{ug/L} \\ \hline \textbf{ug/L} \end{array}$	<u>D</u>	%Rec 105	Limits	RPD	Limit
Benzene 50.0 Bromoform 50.0 Bromomethane 50.0	46.7	ū		105			
Bromoform 50.0 Bromomethane 50.0		ua/l		100	39 - 162	0	50
Bromomethane 50.0	11 8	~g/=		93	74 - 123	1	30
	77.0	ug/L		90	60 - 134	1	30
Carbon disulfide 50.0	43.7	ug/L		87	10 - 171	10	50
	48.1	ug/L		96	63 - 142	1	30
Carbon tetrachloride 50.0	47.9	ug/L		96	70 - 131	2	30
Chlorobenzene 50.0	48.2	ug/L		96	79 - 120	0	30
Chlorodibromomethane 50.0	45.3	ug/L		91	63 - 134	1	50
Chloroethane 50.0	46.0	ug/L		92	47 - 148	1	40
Chloroform 50.0	46.6	ug/L		93	76 - 128	1	30
Chloromethane 50.0	45.4	ug/L		91	47 - 151	1	30
cis-1,2-Dichloroethene 50.0	46.6	ug/L		93	78 - 127	1	30
cis-1,3-Dichloropropene 50.0	46.2	ug/L		92	73 - 128	1	30
Dichlorobromomethane 50.0	45.6	ug/L		91	72 - 129	1	30
Ethylbenzene 50.0	47.6	ug/L		95	78 - 125	0	30
Methylene Chloride 50.0	45.2	ug/L		90	79 - 124	0	30
Styrene 50.0	46.7	ug/L		93	75 - 129	0	30
Tetrachloroethene 50.0	47.1	ug/L		94	77 - 128	1	30
Toluene 50.0	46.4	ug/L		93	77 - 125	0	30
trans-1,2-Dichloroethene 50.0	45.6	ug/L		91	78 - 130	2	30
trans-1,3-Dichloropropene 50.0	45.4	ug/L		91	72 - 127	1	50
Trichloroethene 50.0	46.7	ug/L		93	80 - 120	2	30
Vinyl chloride 50.0	48.0	ug/L		96	58 - 141	1	30
Xylenes, Total 100	94.2	ug/L		94	80 - 124	1	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	94		70 - 130
1,2-Dichloroethane-d4 (Surr)	94		70 - 130
Dibromofluoromethane (Surr)	92		70 - 130
4-Bromofluorobenzene (Surr)	92		70 - 130

Lab Sample ID: MB 680-361179/9

Matrix: Water

Analysis Batch: 361179

Client Sample ID: Method Blank

Prep Type: Total/NA

•	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<1.0		1.0		ug/L			12/02/14 10:14	1
1,1,2,2-Tetrachloroethane	<1.0		1.0		ug/L			12/02/14 10:14	1
1,1,2-Trichloroethane	<1.0		1.0		ug/L			12/02/14 10:14	1
1,1-Dichloroethane	<1.0		1.0		ug/L			12/02/14 10:14	1
1,1-Dichloroethene	<1.0		1.0		ug/L			12/02/14 10:14	1
1,2-Dichloroethane	<1.0		1.0		ug/L			12/02/14 10:14	1
1,2-Dichloropropane	<1.0		1.0		ug/L			12/02/14 10:14	1
2-Butanone (MEK)	<10		10		ug/L			12/02/14 10:14	1
2-Hexanone	<10		10		ug/L			12/02/14 10:14	1
4-Methyl-2-pentanone (MIBK)	<10		10		ug/L			12/02/14 10:14	1
Acetone	<10		10		ug/L			12/02/14 10:14	1
Benzene	<1.0		1.0		ug/L			12/02/14 10:14	1

TestAmerica Savannah

Page 26 of 36

Client: EHS Support, LLC Project/Site: Ashland Alterman

nerica 300 iD. 660-107535-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-361179/9

Matrix: Water

Analysis Batch: 361179

Client Sample ID: Method Blank Prep Type: Total/NA

	MB MB						
Analyte	Result Qualifie	er RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Bromoform	<1.0	1.0	ug/L			12/02/14 10:14	1
Bromomethane	<5.0	5.0	ug/L			12/02/14 10:14	1
Carbon disulfide	<2.0	2.0	ug/L			12/02/14 10:14	1
Carbon tetrachloride	<1.0	1.0	ug/L			12/02/14 10:14	1
Chlorobenzene	<1.0	1.0	ug/L			12/02/14 10:14	1
Chlorodibromomethane	<1.0	1.0	ug/L			12/02/14 10:14	1
Chloroethane	<5.0	5.0	ug/L			12/02/14 10:14	1
Chloroform	<1.0	1.0	ug/L			12/02/14 10:14	1
Chloromethane	<1.0	1.0	ug/L			12/02/14 10:14	1
cis-1,2-Dichloroethene	<1.0	1.0	ug/L			12/02/14 10:14	1
cis-1,3-Dichloropropene	<1.0	1.0	ug/L			12/02/14 10:14	1
Dichlorobromomethane	<1.0	1.0	ug/L			12/02/14 10:14	1
Ethylbenzene	<1.0	1.0	ug/L			12/02/14 10:14	1
Methylene Chloride	<5.0	5.0	ug/L			12/02/14 10:14	1
Styrene	<1.0	1.0	ug/L			12/02/14 10:14	1
Tetrachloroethene	<1.0	1.0	ug/L			12/02/14 10:14	1
Toluene	<1.0	1.0	ug/L			12/02/14 10:14	1
trans-1,2-Dichloroethene	<1.0	1.0	ug/L			12/02/14 10:14	1
trans-1,3-Dichloropropene	<1.0	1.0	ug/L			12/02/14 10:14	1
Trichloroethene	<1.0	1.0	ug/L			12/02/14 10:14	1
Vinyl chloride	<1.0	1.0	ug/L			12/02/14 10:14	1
Xylenes, Total	<2.0	2.0	ug/L			12/02/14 10:14	1

	MB	MB					
Surrogate	%Recovery	Qualifier	Limits	F	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	86		70 - 130			12/02/14 10:14	1
1,2-Dichloroethane-d4 (Surr)	100		70 - 130			12/02/14 10:14	1
Dibromofluoromethane (Surr)	98		70 - 130			12/02/14 10:14	1
4-Bromofluorobenzene (Surr)	92		70 - 130			12/02/14 10:14	1

Lab Sample ID: LCS 680-361179/4

Matrix: Water

Analysis Batch: 361179

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	50.0	50.6		ug/L		101	76 - 126
1,1,2,2-Tetrachloroethane	50.0	47.3		ug/L		95	71 - 127
1,1,2-Trichloroethane	50.0	56.8		ug/L		114	69 _ 127
1,1-Dichloroethane	50.0	52.9		ug/L		106	69 - 132
1,1-Dichloroethene	50.0	47.9		ug/L		96	73 - 134
1,2-Dichloroethane	50.0	55.1		ug/L		110	75 - 120
1,2-Dichloropropane	50.0	56.3		ug/L		113	71 - 126
2-Butanone (MEK)	250	265		ug/L		106	55 - 142
2-Hexanone	250	294		ug/L		118	52 - 149
4-Methyl-2-pentanone (MIBK)	250	298		ug/L		119	51 ₋ 143
Acetone	250	309		ug/L		123	39 - 162
Benzene	50.0	56.9		ug/L		114	74 - 123
Bromoform	50.0	48.6		ug/L		97	60 - 134
Bromomethane	50.0	38.1		ug/L		76	10 - 171

TestAmerica Savannah

Page 27 of 36

2

3

5

Q Q

10

12

13

14

15

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike

LCS LCS

TestAmerica Job ID: 680-107535-1

Client: EHS Support, LLC Project/Site: Ashland Alterman

e

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-361179/4

Matrix: Water

Analysis Batch: 361179

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec.

	Opino						/011001
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Carbon disulfide	50.0	51.8		ug/L		104	63 - 142
Carbon tetrachloride	50.0	49.1		ug/L		98	70 _ 131
Chlorobenzene	50.0	53.2		ug/L		106	79 _ 120
Chlorodibromomethane	50.0	56.4		ug/L		113	63 - 134
Chloroethane	50.0	57.0		ug/L		114	47 - 148
Chloroform	50.0	52.1		ug/L		104	76 - 128
Chloromethane	50.0	44.1		ug/L		88	47 ₋ 151
cis-1,2-Dichloroethene	50.0	52.8		ug/L		106	78 ₋ 127
cis-1,3-Dichloropropene	50.0	59.1		ug/L		118	73 - 128
Dichlorobromomethane	50.0	53.7		ug/L		107	72 ₋ 129
Ethylbenzene	50.0	51.9		ug/L		104	78 - 125
Methylene Chloride	50.0	61.5		ug/L		123	79 ₋ 124
Styrene	50.0	56.2		ug/L		112	75 ₋ 129
Tetrachloroethene	50.0	54.7		ug/L		109	77 _ 128
Toluene	50.0	57.7		ug/L		115	77 ₋ 125
trans-1,2-Dichloroethene	50.0	48.9		ug/L		98	78 - 130
trans-1,3-Dichloropropene	50.0	57.9		ug/L		116	72 _ 127
Trichloroethene	50.0	52.4		ug/L		105	80 - 120
Vinyl chloride	50.0	53.3		ug/L		107	58 - 141
Xylenes, Total	100	104		ug/L		104	80 - 124

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	104		70 - 130
1,2-Dichloroethane-d4 (Surr)	104		70 - 130
Dibromofluoromethane (Surr)	108		70 - 130
4-Bromofluorobenzene (Surr)	96		70 - 130

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water Analysis Batch: 361179

Lab Sample ID: LCSD 680-361179/5

Analysis Daton. 001113									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	50.0	44.9		ug/L		90	76 - 126	12	30
1,1,2,2-Tetrachloroethane	50.0	43.3		ug/L		87	71 - 127	9	30
1,1,2-Trichloroethane	50.0	50.4		ug/L		101	69 - 127	12	30
1,1-Dichloroethane	50.0	49.7		ug/L		99	69 - 132	6	30
1,1-Dichloroethene	50.0	47.9		ug/L		96	73 - 134	0	30
1,2-Dichloroethane	50.0	47.2		ug/L		94	75 - 120	16	30
1,2-Dichloropropane	50.0	49.5		ug/L		99	71 - 126	13	30
2-Butanone (MEK)	250	251		ug/L		101	55 - 142	5	30
2-Hexanone	250	248		ug/L		99	52 - 149	17	30
4-Methyl-2-pentanone (MIBK)	250	255		ug/L		102	51 - 143	16	30
Acetone	250	214		ug/L		85	39 - 162	36	50
Benzene	50.0	50.4		ug/L		101	74 - 123	12	30
Bromoform	50.0	44.4		ug/L		89	60 - 134	9	30
Bromomethane	50.0	33.9		ug/L		68	10 - 171	12	50
Carbon disulfide	50.0	45.1		ug/L		90	63 - 142	14	30
Carbon tetrachloride	50.0	44.6		ug/L		89	70 _ 131	10	30

TestAmerica Savannah

Page 28 of 36

12/4/2014

3

5

7

10

111

13

QC Sample Results

Spike

Added

50.0

50.0

50.0

50.0

50.0

100

Client: EHS Support, LLC TestAmerica Job ID: 680-107535-1
Project/Site: Ashland Alterman

LCSD LCSD

50.0

48.6

56.0

48.9

42.5

99.1

Result Qualifier

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-361179/5 Matrix: Water

Analysis Betch: 2644

Analyte

Chlorobenzene

Chloroethane Chloroform

Chloromethane

Ethylbenzene

Styrene

Toluene

Chlorodibromomethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorobromomethane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Analysis Batch: 361179

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

			Prep T	ype: Tot	tal/NA	
			%Rec.		RPD	
Jnit	D	%Rec	Limits	RPD	Limit	
ıg/L		100	79 - 120	6	30	
ıg/L		97	63 - 134	15	50	
ıg/L		112	47 - 148	2	40	
ug/L		94	76 - 128	10	30	

98

85

99

80 - 120

58 - 141

80 - 124

7

22

5

50.0 47.2 50.0 40.5 81 47 - 151 9 30 ug/L 50.0 47.1 94 78 - 127 11 30 ug/L 108 50.0 73 - 128 9 30 54.2 ug/L 50.0 45.9 ug/L 92 72 - 129 16 30 ug/L 50.0 48.6 97 78 - 125 6 30 50.0 59.5 ug/L 119 79 - 124 3 30 50.0 102 30 51.1 ug/L 75 - 129 9 50.0 95 47.7 ug/L 77 - 128 14 30 50.0 50.1 ug/L 100 77 - 125 14 30 50.0 43.6 ug/L 87 78 - 130 11 30 50.0 54.3 109 72 - 127 50 ug/L

ug/L

ug/L

ug/L

LCSD LCSD %Recovery Qualifier Surrogate Limits Toluene-d8 (Surr) 98 70 - 130 1,2-Dichloroethane-d4 (Surr) 91 70 - 130 Dibromofluoromethane (Surr) 98 70 - 130 4-Bromofluorobenzene (Surr) 90 70 - 130

12

30

30

30

10

14

QC Association Summary

Client: EHS Support, LLC TestAmerica Job ID: 680-107535-1
Project/Site: Ashland Alterman

GC/MS VOA

Analysis Batch: 360958

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-107535-1	Trip Blank	Total/NA	Water	8260B	
680-107535-2	MW-22A	Total/NA	Water	8260B	
680-107535-3	MW-22B	Total/NA	Water	8260B	
680-107535-4	MW-21C	Total/NA	Water	8260B	
680-107535-5	MW-21B	Total/NA	Water	8260B	
680-107535-7	MW-19D	Total/NA	Water	8260B	
LCS 680-360958/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-360958/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-360958/10	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 361167

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-107535-6	MW-19A	Total/NA	Water	8260B	
680-107535-9	MW-19B	Total/NA	Water	8260B	
680-107535-11	Field Blank-1	Total/NA	Water	8260B	
LCS 680-361167/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-361167/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-361167/10	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 361179

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-107535-6	MW-19A	Total/NA	Water	8260B	
680-107535-8	MW-19C	Total/NA	Water	8260B	
680-107535-10	Dup-1	Total/NA	Water	8260B	
LCS 680-361179/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-361179/5	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 680-361179/9	Method Blank	Total/NA	Water	8260B	

-

4

Ω

9

11

12

13

_ _ _ _

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: Trip Blank Lab Sample ID: 680-107535-1 Date Collected: 11/19/14 11:00

Matrix: Water

Date Received: 11/21/14 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	360958	11/30/14 16:43	TF1	TAL SAV
	Instrum	ont ID: CMSO2								

Client Sample ID: MW-22A Lab Sample ID: 680-107535-2

Date Collected: 11/19/14 11:33 **Matrix: Water**

Date Received: 11/21/14 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	360958	11/30/14 17:06	TF1	TAL SAV
	Instrum	ent ID: CMSO2								

Client Sample ID: MW-22B Lab Sample ID: 680-107535-3

Date Collected: 11/19/14 12:07 **Matrix: Water**

Date Received: 11/21/14 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type Total/NA	Type Analysis	Method 8260B	Run	Factor	Amount 5 mL	Amount 5 mL	Number 360958	or Analyzed 11/30/14 17:28	Analyst TF1	- Lab TAL SAV
Total/INA	. ,	ent ID: CMSO2		'	JIIL	JIIIL	300936	11/30/14 17:20	" "	TAL SAV

Client Sample ID: MW-21C Lab Sample ID: 680-107535-4

Date Collected: 11/19/14 13:53 Date Received: 11/21/14 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	360958	11/30/14 17:51	TF1	TAL SAV
	Instrum	ent ID: CMSO2								

Lab Sample ID: 680-107535-5 Client Sample ID: MW-21B

Date Collected: 11/19/14 13:40 Date Received: 11/21/14 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	360958	11/30/14 18:14	TF1	TAL SAV
	Instrume	ent ID: CMSO2								

Client Sample ID: MW-19A Lab Sample ID: 680-107535-6

Date Collected: 11/19/14 16:22 Matrix: Water Date Received: 11/21/14 10:00

Dil Batch Batch Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Total/NA 8260B 361167 12/02/14 05:50 TF1 Analysis 5 mL 5 mL TAL SAV

Instrument ID: CMSAA

TestAmerica Savannah

Matrix: Water

Matrix: Water

Client: EHS Support, LLC Project/Site: Ashland Alterman

Client Sample ID: MW-19A Lab Sample ID: 680-107535-6 Date Collected: 11/19/14 16:22

Matrix: Water

Date Received: 11/21/14 10:00

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260B 20 5 mL 5 mL 361179 12/02/14 15:44 MMT TAL SAV Instrument ID: CMSP2

Client Sample ID: MW-19D Lab Sample ID: 680-107535-7

Date Collected: 11/19/14 16:14 **Matrix: Water**

Date Received: 11/21/14 10:00

Batch Batch Dil Initial Final Batch Prepared Method or Analyzed Prep Type Type Run Factor Amount Amount Number Analyst Lab Total/NA Analysis 8260B 5 mL 5 mL 360958 11/30/14 18:59 TF1 TAL SAV Instrument ID: CMSO2

Lab Sample ID: 680-107535-8 Client Sample ID: MW-19C

Date Collected: 11/19/14 17:29 Matrix: Water

Date Received: 11/21/14 10:00

Batch Batch Dil Initial Final Batch Prepared Method Number or Analyzed Prep Type Type Run Factor Amount Amount Analyst Lab TAL SAV 12/02/14 16:07 8260B 361179 MMT Total/NA Analysis 2 5 mL 5 mL Instrument ID: CMSP2

Client Sample ID: MW-19B Lab Sample ID: 680-107535-9

Date Collected: 11/19/14 18:07

Date Received: 11/21/14 10:00

Batch Batch Dil Initial Final Batch Prepared Method Number or Analyzed Prep Type Type Run Factor Amount Amount Analyst Lab TAL SAV Total/NA Analysis 8260B 5 5 mL 5 mL 361167 12/02/14 06:12 TF1 Instrument ID: CMSAA

Client Sample ID: Dup-1 Lab Sample ID: 680-107535-10

Date Collected: 11/19/14 00:00 Matrix: Water

Date Received: 11/21/14 10:00

Total/NA

Batch Batch Dil Initial Final Batch Prepared Method Prep Type Type Run Factor Amount Amount Number or Analyzed **Analyst** Lab Total/NA 8260B 361179 12/02/14 16:29 MMT TAL SAV Analysis 5 mL 5 mL Instrument ID: CMSP2

Lab Sample ID: 680-107535-11 Client Sample ID: Field Blank-1

Date Collected: 11/19/14 14:30 Matrix: Water Date Received: 11/21/14 10:00

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Run Amount Number or Analyzed Analyst Factor Amount Lab

5 mL

5 mL

361167

12/02/14 00:11

TF1

Analysis Instrument ID: CMSAA

8260B

TestAmerica Savannah

TAL SAV

Matrix: Water

Lab Chronicle

Client: EHS Support, LLC Project/Site: Ashland Alterman

TestAmerica Job ID: 680-107535-1

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

5

6

8

9

7 7

12

4 /

Website: www.testamericainc.com Phone: (912) 354-7858	2165			PAGE OF	STANDARD REPORT DELIVERY	DATE DUE	EXPEDITED REPORT DELIVERY (SURCHARGE)	DATE DUE 13/4/14	NUMBER OF COOLERS SUBMITTED PER SHIPMENT:	REMARKS												DATE		DATE TIME			TAL8240-680 (1008)
	Fax: (912) 352-0165	ame/Location Phone	Fax:	REQUIRED ANALYSIS						NUMBER OF CONTAINERS SUBMITTED	6	80-10	77538	5 Cha	in of	Custo	dy					DEI INOLIEUED DV. GORANTIED	8	RECEIVED BY: (SIGNATURE)		LABORATORY REMARKS O.4 /o.1° c.	6 7 8 9 10
	Savannah, GA 31404	Alternate Laboratory Name/Location		MATRIX TYPE T	('	DLVENT	O (OIL., SC	TIONIE ISOFID	77 ONE ONE SEW OOR (MY	SOLID ANON	~	×	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		~	2	~	~	δ	~	DATE TIME	11/2/12	DÂTE / TIME	LABORATORY USE ONLY	CUSTODY SAVANNAH LABO LOG NO. (\$6-[04535]	12 13 14 15
ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD				PROJECT LOCATION (STATE)	CONTRACT NO.	CLIENT FAX	- - - - - - - - - - - - - - - - - - -		OSITE (C		ť	K A	× de	× ×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$	**************************************	* ***	A	× ***		TIME REI INOLIISHED RY. LATERITIES	0	TIME RECEIVED BY (SIGNATURE)		TIME CUSTODY INTACT YES O NO O	
ANALYSIS REQUEST	estamerica estamerica		ENVIRONMENTAL T	reimen	MANAGER P.O. NUMBER	Sterr PHONE	CLIENT E-MAIL	R.Y. PMR	IIS WORK (if applicable)		1100 Trip Blank	1133 MW-22A	DEE-WY LOC	353 MW-216	340 MW-21B	622 MW-19A	951-MW 19	174 MW-19 C	1807 MW-19B	0000 Jup-1	1430 field Blenk-0	SIGNATIBE	11/20/14	опер DÁTE (1/30/1/4	- 1	DATE UPT	
F	EST≠		THE LEADER I	Ashlend Alterm	TAL (LAB) PROJECT MAN	CLIENT (SITE) PM	CLIENT NAME SHS SUPP	CLIENT ADDRESS	COMPANY CONTRACTION	SAMPLE	m/61/11	<u>.</u>	11/10/11 /J	11/14/14	1419/14 13	91 41/4/11	91 11/151/11	[] PI/PI/II	11/19/11	11/4/11	51/5/11	RELINQUISHED BY: (SIGNATURE)	Eden 19h			RECEIVED FOR LABORATORY BY: (SIGNATURE)	

Serial Number 61879

Login Sample Receipt Checklist

Client: EHS Support, LLC Job Number: 680-107535-1

Login Number: 107535 List Source: TestAmerica Savannah

List Number: 1

Creator: Conner, Keaton

ordator. Comici, reator		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

4

5

8

9

11

12

14

Client: EHS Support, LLC Project/Site: Ashland Alterman

Laboratory: TestAmerica Savannah

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	AFCEE		SAVLAB	
A2LA	DoD ELAP		399.01	02-28-15
A2LA	ISO/IEC 17025		399.01	02-28-15
Alabama	State Program	4	41450	06-30-15
Arkansas DEQ	State Program	6	88-0692	01-31-15
California	NELAP	9	3217CA	07-31-14 *
Colorado	State Program	8	N/A	12-31-14 *
Connecticut	State Program	1	PH-0161	03-31-15
Florida	NELAP	4	E87052	06-30-15
GA Dept. of Agriculture	State Program	4	N/A	06-12-17
Georgia	State Program	4	N/A	06-30-15
Georgia	State Program	4	803	06-30-15
Guam	State Program	9	09-005r	04-16-15
Hawaii	State Program	9	N/A	06-30-15
Illinois	NELAP	5	200022	11-30-14 *
Indiana	State Program	5	N/A	06-30-15
lowa	State Program	7	353	07-01-15
Kentucky (DW)	State Program	4	90084	12-31-14 *
Kentucky (UST)	State Program	4	18	06-30-15
Louisiana	NELAP	6	30690	06-30-15
Louisiana (DW)	NELAP	6	LA140023	12-31-14 *
Maine	State Program	1	GA00006	09-24-16
Maryland	State Program	3	250	12-31-14 *
Massachusetts	State Program	1	M-GA006	06-30-15
Michigan	State Program	5	9925	06-30-15
Mississippi	State Program	4	N/A	06-30-15
Montana	State Program	8	CERT0081	01-01-15 *
Nebraska	State Program	7	TestAmerica-Savannah	06-30-15
New Jersey	NELAP	2	GA769	06-30-15
New Mexico	State Program	6	N/A	06-30-15
New York	NELAP	2	10842	03-31-15
North Carolina (DW)	State Program	4	13701	07-31-15
North Carolina (WW/SW)	State Program	4	269	12-31-14 *
Oklahoma	State Program	6	9984	08-31-15
Pennsylvania	NELAP	3	68-00474	06-30-15
Puerto Rico	State Program	2	GA00006	12-31-14 *
South Carolina	State Program	4	98001	06-30-15
Tennessee	State Program	4	TN02961	06-30-15
Texas	NELAP	6	T104704185-14-7	11-30-15
USDA	Federal		SAV 3-04	06-11-17
Virginia	NELAP	3	460161	06-14-15
Washington	State Program	10	C805	06-10-15
West Virginia (DW)	State Program	3	9950C	12-31-14 *
West Virginia DEP	State Program	3	94	06-30-15
Wisconsin	State Program	5	999819810	08-31-15
Wyoming	State Program	8	8TMS-L	06-30-15

6

8

4.6

11

12

14

^{*} Certification renewal pending - certification considered valid.

TestAmerica Savannah

ATTACHMENT D

Draft Environmental Covenant

After Recording, Please Return to:

King & Spalding LLP Cross Reference: Deed Book 09320, Page 1180 Peachtree Street, N.E. 00519, Clayton County, Georgia Records Atlanta, Georgia 30309-3521

Attention: Amelia S. Magee, Esq.

Environmental Covenant

This instrument is an Environmental Covenant executed pursuant to the Georgia Uniform Environmental Covenants Act, OCGA § 44-16-1, *et seq*. This Environmental Covenant subjects the Property identified below to the activity and/or use limitations specified in this document. The effective date of this Environmental Covenant shall be the date upon which the fully executed Environmental Covenant has been recorded in accordance with OCGA § 44-16-8(a).

Fee Owner of Property/Grantor: Tara Retail Holdings LLC

c/o Eric J. Nathan, Manager Weener & Nathan LLP

5887 Glenridge Drive, NE, Suite 275

Atlanta, Georgia 30328

Grantee/Holder: Ashland Inc.

c/o Richmond L. Williams

Chief Counsel, Environmental Litigation

Ashland Inc.

1313 N. Market Street Wilmington, DE 19894

Grantee/Entity withState of Georgia **express power to enforce:**Department of N

Department of Natural Resources Environmental Protection Division 2 Martin Luther King Jr. Drive, SE

Suite 1456 East Tower Atlanta, GA 30334

Property:

The property subject to this Environmental Covenant is the Tara Shopping Center, located on 8600 Tara Boulevard in Jonesboro, Clayton County, Georgia (hereinafter "Property"). This tract of land was conveyed on December 11, 2007 from Alterman Enterprises, LLC to Tara Retail Holdings LLC as recorded in Deed Book 09320, Page 00519, Clayton County Records. The area is located in Land Lot 111 of the 4th District of Clayton County, Georgia, consisting of 6.940 acres of commercial retail. A complete legal description of the Property is attached as Exhibit A and a map of the Property is attached as Exhibit B. The location of corrective action for soil at the Property is designated as the "Type 5 area" with land use and activity restrictions subject to this Environmental Covenant. A complete legal description of the Type 5 area is attached as Exhibit C and a map of the Type 5 Soil Restricted Use Area, inclusive of a twenty foot buffer, is attached as Exhibit D.

Tax Parcel Number(s):

Tax Parcel: 13242D B001 of Clayton County, Georgia

Name and Location of Administrative Records:

The corrective action at the Property that is the subject of this Environmental Covenant is described in the following documents:

- Voluntary Investigation and Remediation Plan and Application, dated January 2012
- Soil Remediation Completion Report, dated March 14, 2014
- Monitoring and Maintenance Plan, October 2014

These documents are available at the following location[s] in the file for HSI 10798:

Georgia Environmental Protection Division Response and Remediation Program 2 Martin Luther King Jr. Drive, SE, Suite 1054 East Tower Atlanta, GA 30334 M-F 8:00 AM to 4:30 PM excluding state holidays

Description of Contamination and Corrective Action:

This Property has been listed on the state's hazardous site inventory and has been designated as needing corrective action due to the presence of hazardous wastes, hazardous constituents, or hazardous substances regulated under state law. Contact the property owner or the Georgia Environmental Protection Division for further information concerning this Property. This notice is provided in compliance with the Georgia Hazardous Site Response Act.

This Environmental Covenant is made pursuant to the Georgia Uniform Environmental Covenants Act, O.C.G.A. § 44-16-1 *et seq.* by Tara Retail Holdings LLC, its successors and assigns, Ashland Inc., and the State of Georgia, Department of Natural Resources, Environmental Protection Division, (hereafter "EPD"), its successors and assigns. This Environmental Covenant is required because of a release of perchloroethene (a drycleaner solvent) on the Property (also commonly referred to as Tetrachloroethene). Trichloroethene, cis-1,2-dichloroethene, and vinyl chloride, are degradation compounds of perchloroethene and are also present on the Property. Perchloroethene, trichloroethene, cis-1,2-dichloroethene, and vinyl chloride are "regulated substances" as defined under the Georgia Hazardous Site Response Act, O.C.G.A. § 12-8-90 *et seq.*, and the rules promulgated thereunder (hereinafter "HSRA" and "Rules", respectively). The Corrective Action to protect human health and the environment at the Property consists of the

installation and maintenance of engineering controls in the Type 5 area (i.e., monolith and asphalt cap) and establishment of institutional controls to limit land use to non-residential and restrict groundwater use beneath the entire Property.

Grantor, Tara Retail Holdings LLC (hereinafter "Tara Retail"), hereby binds Grantor, its successors and assigns to the activity and use restriction(s) for the Property identified herein and grants such other rights under this Environmental Covenant in favor of Ashland Inc. and EPD. EPD shall have full right of enforcement of the rights conveyed under this Environmental Covenant pursuant to HSRA, O.C.G.A. § 12-8-90 *et seq.*, and the rules promulgated thereunder. Failure to timely enforce compliance with this Environmental Covenant or the use or activity limitations contained herein by any person shall not bar subsequent enforcement by such person and shall not be deemed a waiver of the person's right to take action to enforce any non-compliance. Nothing in this Environmental Covenant shall restrict EPD from exercising any authority under applicable law.

Tara Retail makes the following declarations as to limitations, restrictions, and uses to which the Property may be put and specifies that such declarations shall constitute covenants to run with the land, pursuant to O.C.G.A. § 44-16-5(a); are perpetual, unless modified or terminated pursuant to the terms of this Environmental Covenant pursuant to O.C.G.A. § 44-16-9 and 10; and shall be binding on all parties and all persons claiming under them, including all current and future owners of any portion of or interest in the Property (hereinafter "Owner"). Should a transfer or sale of the Property occur before such time as this Environmental Covenant has been amended or revoked then said Environmental Covenant shall be binding on the transferee(s) or purchaser(s).

The Environmental Covenant shall inure to the benefit of Ashland Inc., EPD, Tara Retail and their respective successors and assigns and shall be enforceable by the Director of EPD or his agents or assigns, Ashland Inc. or its successors and assigns, Tara Retail or its successors and assigns, and other party(ies) as provided for in O.C.G.A. § 44-16-11 in a court of competent jurisdiction.

Activity and/or Use Limitation(s)

- 1. <u>Registry.</u> Pursuant to O.C.G.A. §§ 44-16-12, this Environmental Covenant and any amendment or termination thereof, may be contained in EPD's registry for environmental covenants.
- 2. Notice. The Owner of the Property must give thirty (30) day advance written notice to EPD of the Owner's intent to convey any interest in the Property. No conveyance of title, easement, lease, or other interest in the Property shall be consummated by the Owner without adequate and complete provision for continued monitoring, operation, and maintenance of the Corrective Action. The Owner of the Property must also give thirty (30) day advance written notice to EPD of the Owner's intent to change the use of the Property, apply for building permit(s), or propose any site work that would affect the Property.
- 3. <u>Notice of Limitation in Future Conveyances.</u> Each instrument hereafter conveying an interest in the Property subject to this Environmental Covenant shall contain a notice of the activity and use limitations set forth in this Environmental Covenant and shall provide the recorded location of the Environmental Covenant.
- 4. <u>Monitoring.</u> Routine inspection and maintenance activities are detailed in the Monitoring and Maintenance Plan dated XX and must be implemented to ensure the integrity of the engineering controls established to protect human health and the environment. The groundwater monitoring

program detailed in the Monitoring and Maintenance Plan will be implemented to monitor the effectiveness of Corrective Action at the Property.

- 5. <u>Periodic Reporting.</u> Annually, by no later than June 15th following the effective date of this Environmental Covenant, the Owner shall submit to EPD an Annual Report as specified in the Maintenance and Monitoring Plan including, but not limited to maintenance and inspection activities, certification of non-residential use of the Property, and documentation stating whether or not the activity and use limitations at the Property comply with this Environmental Covenant.
- 6. Activity and Use Limitation(s). The Property shall be used only for non-residential uses, as defined in Section 391-3-19-.02 of the Rules and defined in and allowed under the Clayton County's zoning regulations as of the date of this Environmental Covenant. Any residential use on the Property shall be prohibited. Any activity on the Property that may result in the release or exposure to the regulated substances that were contained as part of the Corrective Action, or create a new exposure pathway, is prohibited. With the exception of work necessary for the maintenance, repair, or replacement of engineering controls, or as otherwise approved by EPD, activities that are prohibited in the Type 5 Soil Restricted Use Area shown in Exhibit D include but are not limited to the following: drilling, digging, placement of any objects or use of any equipment which deforms or stresses the surface beyond its load bearing capability, piercing the surface with a rod, spike or similar item, bulldozing or earthwork, without prior express written approval from both Ashland Inc. and EPD.

Groundwater Limitation. The use or extraction of groundwater from all underlying groundwater systems beneath the Property for drinking water or for any other non-remedial purposes shall be prohibited until HSRA regulated substances are treated to below the applicable RRS for groundwater. Any extracted groundwater from construction or utility work dewatering activities should be managed and disposed of in accordance with applicable rules and regulations. Should any dewatering of groundwater for construction or utility work purposes be necessary-extracted groundwater should not be discharged into the storm water system or surface waters. All management of impacted groundwater should be done in accordance with all applicable local, state and federal rules and regulations governing the management of such material. Prior to conducting construction or subsurface utility work that may result in exposure to groundwater, a worker must have appropriate HAZWOPER training per OSHA's Hazardous Waste Operations and Emergency Response Standard 29 CFR 1910.120, and perform the work in accordance with a Health and Safety Plan prepared by a qualified safety professional. All management of impacted soil or groundwater performed in the execution of work should be done in accordance with this section.

<u>Building Modification/New Construction</u>: The Property shall be used only for non-residential uses, as defined in Section 391-3-19-.02 of the Rules and defined in and permitted under the Clayton County's zoning regulations as of the date of this Environmental Covenant. New building construction, or modifications to existing building structures that result in the potential for vapor intrusion, must include mechanisms which eliminate the potential for vapor intrusion of constituents identified in this Environmental Covenant (e.g., sub-slab membrane, passive and/or active ventilation systems).

- 7. <u>Permanent Markers.</u> Permanent marker adjacent to the Type 5 area shall be installed and maintained that delineate the restricted area as specified in Section 391-3-19-.07(10) of the Rules. Disturbance or removal of such markers is prohibited.
- 8. <u>Right of Access.</u> In addition to any rights already possessed by EPD and/or the Ashland Inc., the Owner shall allow authorized representatives of EPD and/or Ashland Inc. the right to enter the Property at reasonable times for the purpose of evaluating the Corrective Action; to take samples, to inspect the Corrective Action conducted at the Property, to determine compliance with this Environmental Covenant, and to inspect records that are related to the Corrective Action.

- 9. Recording of Environmental Covenant and Proof of Notification. Within thirty (30) days after the date of the Director's signature, the Owner shall file this Environmental Covenant with the Recorders of Deeds for each County in which the Property is located, and send a file stamped copy of this Environmental Covenant to EPD within thirty (30) days of recording. Within that time period, the Owner shall also send a file-stamped copy to each of the following: (1) Ashland Inc., (2) each person holding a recorded interest in the Property subject to the covenant, (3) each person in possession of the real property subject to the covenant is located government, or other unit of local government in which real property subject to the covenant is located, and (5) each owner in fee simple whose property abuts the property subject to the Environmental Covenant.
- 10. <u>Termination or Modification.</u> The Environmental Covenant shall remain in full force and effect in accordance with O.C.G.A. § 44-5-60, unless and until the Director determines that the Property is in compliance with the Type 1, 2, 3, or 4 Risk Reduction Standards, as defined in Section 391-3-19-.07, whereupon the Environmental Covenant may be amended or revoked in accordance with Section 391-3-19-08(7) of the Rules and O.C.G.A. § 44-16-1 *et seq.*
- 11. <u>Severability.</u> If any provision of this Environmental Covenant is found to be unenforceable in any respect, the validity, legality, and enforceability of the remaining provisions shall not in any way be affected or impaired.
- 12. No EPD Interest in Property Created. This Environmental Covenant does not in any way create any interest by EPD in the Property that is subject to the Environmental Covenant. Furthermore, the act of approving this Environmental Covenant does not in any way create any interest by EPD in the Property in accordance with O.C.G.A. § 44-16-3(b).

Representations and Warranties.

Grantor hereby represents and warrants to the other signatories hereto:

- a) That the Grantor has the power and authority to enter into this Environmental Covenant, to grant the rights and interests herein provided and to carry out all obligations hereunder;
- b) That the Grantor is the sole owner of the Property and holds fee simple title which is free, clear and unencumbered:
- c) That the Grantor has identified all other parties that hold any interest (e.g., encumbrance) in the Property and notified such parties of the Grantor's intention to enter into this Environmental Covenant;
- d) That this Environmental Covenant will not materially violate, contravene, or constitute a material default under any other agreement, document or instrument to which Grantor is a party, by which Grantor may be bound or affected;
- e) That the Grantor has served each of the people or entities referenced in Activity 10 above with an identical copy of this Environmental Covenant in accordance with O.C.G.A. § 44-16-4(d).
- f) That this Environmental Covenant will not materially violate or contravene any zoning law or other law regulating use of the Property; and
- g) That this Environmental Covenant does not authorize a use of the Property that is otherwise prohibited by a recorded instrument that has priority over the Environmental Covenant.

Notices.

Any document or communication required to be sent pursuant to the terms of this Environmental Covenant shall be sent to the following persons:

Georgia Environmental Protection Division Branch Chief Land Protection Branch 2 Martin Luther King Jr. Drive SE Suite 1054 East Tower Atlanta, Georgia 30334

Tara Retail Holdings LLC c/o Eric J. Nathan, Manager Weener & Nathan LLP 5887 Glenridge Drive, NE, Suite 275 Atlanta, Georgia 30328

Ashland Inc. c/o Richmond L. Williams Chief Counsel, Environmental Litigation Ashland Inc. 1313 N. Market Street Wilmington, DE 19894

Environmental Covenants Act, on the day of _	, 20	
Signed, sealed, and delivered in the presence of:	For the Grantor:	
Unofficial Witness (Signature)	Name of Grantor (Print)	
		(Seal)
Unofficial Witness Name (Print)	Grantor's Authorized Representative (Signature)	
	Authorized Representative Name (<i>Print</i>)	
Unofficial Witness Address (Print)		
	Title of Authorized Representative (<i>Print</i>)	_
Notary Public (Signature)		
	Dated:	
My Commission Expires:	(NOTARY SEAL)	

Grantor has caused this Environmental Covenant to be executed pursuant to The Georgia Uniform

Signed, sealed, and delivered in the presence of:	For the State of Georgia Environmental Protection Division:	
		(Seal)
Unofficial Witness (Signature)	(Signature)	
Unofficial Witness Name (Print)	Judson H. Turner Director	
	Dated:	
Unofficial Witness Address (Print)	(NOTARY SEAL)	
N. D. H. (G)		
Notary Public (Signature)		
My Commission Expires:		
Signed, sealed, and delivered in the presence of:	For the Holder:	
Unofficial Witness (Signature)	Name of Holder (Print)	
		(Seal)
Unofficial Witness Name (Print)	Holder's Authorized Representative (Signature)	
	Authorized Representative Name (<i>Print</i>)	<u> </u>
Unofficial Witness Address (Print)		
	Title of Authorized Representative (Print)	
Notary Public (Signature)		
My Commission Expires:	Dated:	

Exhibit A

Legal Description of Property

Exhibit A Legal Description

TARA

MALE TRACT

All that tract or parcel of land lying and being in Land Lots 241-242 of the 13th District of Clayton County, Georgia, as per plat of W. R. Franks, Land Surveyor, dated february 28, 1966, revised February 21, 1967, being more perticularly described as follows:

BEGINNING at the intersection formed by the southerly side of the right of way of Smith Street with the easterly side of the right of way of the South Expressway; running thence south right of way of the South Expressway; running thence south slong the easterly side of the right of way of the south slong the easterly side of the right of way of the south expressway 1243.5 feet to an iron pin and the property now or Expressway 1243.5 feet to an iron pin located on the westerly side of the right of way of Georgia pin located on the westerly side of the right of way of Georgia State Highway #54; running thence northeasterly along the westerly side of the right of way of Georgia State Highway #54, westerly side of the right of way of Smith life. I feet to an iron pin; running thence west at an interior langle of 77 degrees 38 sinutes with the last mentioned call 100 feet to an iron pin; running thence north 181.8 feet to an iron feet to an iron pin; running thence north 181.8 feet to an iron pin located on the southerly side of the southerly side of the southerly side of the southerly side of the right of way of Smith Street intersects southerly side of the right of way of Smith Street intersects the exaterly side of the right of way of the South Expressway and the POINT OF REGINNING. Said tract containing an aggregate of 9.29 acres according to the above plat.

TARA WILLIS TRACT

all that tract or parcel of land lying and being in Land Lot 241. of the 13th District, of Clayton County, Georgia, and being more particularly described as follows:

BEGIN at an Iron pin on the westerly side of Psyetteville Road (Georgia State Highway #54) 187.9 feet south of the intersection of the westerly side of Fsyetteville Road and the southerly side of Smith Street, as measured along the westerly side of Fsyetteville Road; run thence south along the westerly side of Fsyetteville Road; run thence south along the westerly side of Fsyetteville Road a distance of 65.00 feet to an iron pln; run thence southwest a distance of 95.00 feet to an iron pin; run thence north OI degrees 15 minutes west forming an interior angle of 64 degrees 41 minutes with the preceding course a distance of 65.00 feet to an iron pin; run thence northeast a distance of 105.00 feet to an iron pin on the westerly side of Fsyetteville Road and the Point of Beginning; being more fully shown on survey prepared by Eston Pendisy & Associates, Inc., dated December 18, 1984.

This dead is given subject to all maxements and restrictive covenants of record.

[LEGAL CONTINUES ON FOLLOWING PAGE]

[CONTINUATION OF TARA LEGAL DESCRIPTION]

TOGETHER WITH:

TARA COOGLES TRACT

All that tract or parcel of land lying and being in Land Lot 241, of the 13th Disbrick, of Clayton County, Georgie, and being more particularly described as follows:

BEGIN at an iron pin at the intersection of the southerly side of Smith Street and the westerly side of Fayetteville Road of Smith Street and the westerly side of Fayetteville Road (Georgia State Highway \$54); run thence South along the westerly side of Fayetteville Road a distance of 107.90 feet to westerly side of Fayetteville Road a distance of 107.90 feet to an iron pin; run thence morth along distance of 131.30 feet to an iron pin; run thence morth along distance of 131.30 feet to an iron pin; run thence of 140.50 feet to an iron pin on the southerly side of Smith Street; run thence must along the southerly side of Smith Street; run thence must along the southerly side of Smith Street; run thence must along the southerly side of Smith Street; run thence must along the southerly side of Smith Street; run thence must along the southerly side of Smith Street; run thence must along the southerly side of Smith Street; run thence must along the southerly side of Smith Street; run thence must along the southerly side of Smith Street; run thence must along the southerly side of Smith Street; run thence must along the southerly side of Smith Street; run thence must along the southerly side of Smith Street; run thence must along the southerly side of Smith Street; run thence must along the southerly side of Smith Street; run thence must along the southerly side of Smith Street; run thence along the southerly side of Smith Street; run thence along the southerly side of Smith Street; run thence along the southerly side of Smith Street; run thence along the southerly side of Smith Street a distance of 131.90 feet to an iron pin and the Foliat Street a distance of 131.90 feet to an iron pin and the Foliat Street a distance of 131.90 feet to an iron pin and the Foliat Street a distance of 131.90 feet to an iron pin and the Foliat Street a distance of 131.90 feet to an iron pin and the Foliat Street a distance of 131.90 feet to an iron pin and the Foliat Street a distance of 131.90 feet to an iron pin and the Foliat Stree

This deed is given subject to all essements and restrictive covenents of record.

LESS AND EXCEPT any portion(s) of the above-described property that was conveyed to third parties by Grantor or Grantor's predecessor(s) in title.

This is the same property described in that certain Limited Warranty Deed from Alterman Enterprises, LLC to Tara Retail Holdings LLC and recorded at Book 9320, Page 519, Clayton County, Georgia records.

[END OF LEGAL DESCRIPTION]

Exhibit B

Property Map

Exhibit C

Legal Description of Type 5 Area

DESCRIPTION OF

Type 5 Soil Restricted Use Area

All that tract or parcel of land lying and being in Land Lot 242 of the 13rd District, City of Jonesboro, Clayton County, Georgia and being more particularly described as follows:

COMMENCING at an iron pin set at the intersection of the southerly Right of Way of Smith Street (60' R/W) and the westerly Right of Way of Fayetteville Road aka State Route 54 (80' R/W); THENCE running along Fayetteville Road aka State Route 54 (80' R/W) a curve to the right with a radius of 5,689.62 feet and an arc length of 761.22 feet, said curve having a chord bearing of South 14 degrees 41 minutes 02 seconds West and a chord distance of 760.65 feet to a point, said point being the **TRUE POINT OF BEGINNING.**

THENCE from said **TRUE POINT OF BEGINNING** and continuing along said Right of Way a curve to the right with a radius of 5,689.62 feet and an arc length of 141.81 feet, said curve having a chord bearing of South 19 degrees 13 minutes 51 seconds West and a chord distance of 141.80 feet to a point; THENCE leaving said Right of Way North 44 degrees 09 minutes 46 seconds West a distance of 94.04 feet to a point; THENCE North 38 degrees 58 minutes 39 seconds West a distance of 58.30 feet to a point; THENCE North 20 degrees 28 minutes 06 seconds East a distance of 65.77 feet to a point; THENCE South 76 degrees 51 minutes 10 seconds East a distance of 93.47 feet to a point; THENCE South 61 degrees 05 minutes 57 seconds East a distance of 39.84 feet to a point on the westerly Right of Way of Fayetteville Road aka State Route 54 (80' R/W), said point being the **TRUE POINT OF BEGINNING.** Said tract contains 14,614 square feet of 0.34 acres.

Together with a 20 foot wide buffer surrounding said property and being more particularly described as follows:

COMMENCING at an iron pin set at the intersection of the southerly Right of Way of Smith Street (60' R/W) and the westerly Right of Way of Fayetteville Road aka State Route 54 (80' R/W); THENCE running along Fayetteville Road aka State Route 54 (80' R/W) a curve to the right with a radius of 5,689.62 feet and an arc length of 740.88 feet, said curve having a chord bearing of South 14 degrees 34 minutes 53 seconds West and a chord distance of 740.36 feet to a point, said point being the **TRUE POINT OF BEGINNING.**

THENCE from said **TRUE POINT OF BEGINNING** and continuing along said Right of Way a curve to the right with a radius of 5689.62 feet and an arc length of 20.34 feet, said curve having a chord bearing of South 18 degrees 24 minutes 52 seconds West and a chord distance of 20.34 feet to a point; THENCE leaving said Right of Way North 61 degrees 05 minutes 57

seconds West a distance of 39.84 feet to a point; THENCE North 76 degrees 51 minutes 10 seconds West a distance of 93.47 feet to a point; THENCE South 20 degrees 28 minutes 06 seconds West a distance of 65.77 feet to a point; THENCE South 38 degrees 58 minutes 39 seconds East a distance of 58.30 feet to a point; THENCE South 44 degrees 09 minutes 46 seconds East a distance of 94.04 feet to a point on the westerly Right of Way of Fayetteville Road aka State Route 54 (80' R/W); THENCE running along said Right of Way a curve to the right with a radius of 5689.62 feet and an arc length of 22.21 feet, said curve having a chord bearing of South 20 degrees 03 minutes 24 seconds West and a chord distance of 22.21 feet to a point; THENCE leaving said Right of Way and running North 44 degrees 09 minutes 46 seconds West a distance of 104.61 feet to a point; THENCE North 38 degrees 58 minutes 39 seconds West a distance of 70.62 feet to a point; THENCE North 20 degrees 28 minutes 06 seconds East a distance of 94.79 feet to a point; THENCE South 76 degrees 51 minutes 10 seconds East a distance of 113.83 feet to a point; THENCE South 61 degrees 05 minutes 57 seconds East a distance of 38.90 feet to a point on the westerly Right of Way of Fayetteville Road aka State Route 54 (80' R/W), said point being the TRUE POINT OF BEGINNING. Said buffer contains 7,742 square feet or 0.18 acre.

Exhibit D

Type 5 Soil Restricted Use Area Map

DRAFT MONITORING AND MAINTENANCE PLAN

Tara Shopping Center 8600 Tara Boulevard Jonesboro, Clayton County, Georgia Tax Parcel 13242D B001

Former Dry Cleaner Site HSI# 10798

Prepared For:

Weener & Nathan LLP 5887 Glenridge Drive, NE, Suite 275 Atlanta, Georgia 30328 Tara Retail Holdings LLC

Ashland Inc. 5200 Blazer Parkway Dublin, Ohio 43017

Prepared By:

December 2014

TABLE OF CONTENTS

1.0	Intro	oduction	1
		Property Description	
		Remedy Selection	
	1.3	Treatment and Buffer Areas	1
	1.4	Site Restoration	
2.0	Engi	ineering Controls	3
	2.1	Asphalt Cap	3
	2.2	Permanent Markers	3
	2.3	Performance Monitoring	3
3.0	Maiı	ntenance and Inspection Plans	4
	3.1	Asphalt and/or Concrete Cap	4
	3.2	Permanent Markers	
		Groundwater Monitoring Wells	
4.0	Plan	ned Uses of the Property	6
5.0	Repo	orting	7
	5.1	Maintenance and Inspection Reports	7
	5.2		

FIGURES

Figure 1 Site Plan

Figure 2 Type 5 Soil Restricted Use Area

APPENDICES

Appendix A Environmental Covenant

Appendix B Permanent Marker Monument

Appendix C Forms

1.0 INTRODUCTION

This Monitoring and Maintenance (M&M) plan is prepared for the Tara Shopping Center identified at 8600 Tara Boulevard, Jonesboro, Clayton County, Georgia (the Property). The Property was included on the Georgia Environmental Protection Division's (EPD) Hazardous Site Inventory (HSI) as #10798 in 2004 for suspected releases on the Property from former on-site dry cleaning operations. A Site Plan, identifying the location of former dry cleaners, is provided as **Figure 1.**

In 2013, remediation activities were completed to immobilize sources of volatile organic compounds (VOCs) in soil at concentrations above the State of Georgia Type 1 Risk Reduction Standards (RRSs) as a result of releases from former dry cleaner operations. Soil remediation was completed to meet Type 5 RRSs. Engineering controls in the form of an asphalt cap and concrete cover are designed to maintain the integrity of existing monolith (i.e., Treatment Area) as well as address peripheral soil exceeding Type 1 RRS that was not accessible during remediation work due to restrictions associated with building structure set-backs and sub-surface utilities (i.e., Buffer Area). The engineering controls associated with the Type 5 soil restricted use area are depicted on **Figure 2**.

Groundwater monitoring wells at the Property were initially installed to identify the nature and extent of groundwater impacts from dry cleaners operations. Analytical data collected from monitoring wells will be used to assess the effectiveness of the soil remediation activities by monitoring changes in concentrations overtime. This performance monitoring is considered an engineering control for the Property. Monitoring well locations are depicted on **Figure 2**.

The Property is subject to an environmental covenant included in **Appendix A**. The Property owner (Owner) shall implement this M&M Plan consistent with that environmental covenant.

1.1 Property Description

The Tara Shopping Center is comprised of two multi-tenant commercial buildings and surrounding asphalt parking areas to the west. Dry cleaning operations were conducted between 1970 and 2005 (35 years) by a tenant in the southernmost, west facing unit (8564 Tara Boulevard). The primary constituents of concern (COCs) associated with the former dry cleaning operations and releases at the Property are tetrachlorothene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride. Tetracholorethene, TCE, cis-1,2-DCE and vinyl chloride were identified in soil and groundwater above their respective Type 1 RRSs.

1.2 Remedy Selection

In-Situ Solidification/Stabilization was implemented in July 2013 to immobilize VOCs present in unsaturated and saturated soil at the Property. Solidification/Stabilization includes processes that mix inorganic cementitious reagents into affected material to transform the material into a durable, solid, low–hydraulic conductivity material that reduces the rate of contaminant migration through leaching. The resulting area of solid material is known as a monolith.

1.3 Treatment and Buffer Areas

The total volume of soil treated in place was approximately 13,215 cubic yards. The area of treatment is located immediately south of the west facing building structure (beneath the former dry cleaner and nail salon which were removed during treatment) extending, south toward the north facing outbuilding, east to the curb line, and west toward monitoring well MW-10 cluster. The Treatment Area is depicted on **Figure 2.**

Due to limitations with access, areas east and north were not fully treated; however these areas are protected under an existing asphalt and/or concrete engineering cover. Therefore, the Type 5 soi restricted use area includes a 20-foot buffer around the Treatment area. This Buffer Area is depicted on **Figure 2**.

1.4 Site Restoration

Following completion of Solidification/Stabilization activities, the Treatment Area was graded to match the pre-existing sub-grade. A six-inch gravel sub-base and a two-inch thick asphalt cover was then placed over the Treatment Area similar to the existing surrounding parking lot structure (original estimated area 17,082 square feet). To ensure the integrity of the Treatment Area, the new asphalt cover was extended beyond the limits of the Treatment Area. In total, 22,869 square feet of the Property was repaved at the completion of the remediation work.

2.0 ENGINEERING CONTROLS

2.1 Asphalt Cap

The engineering control consists of an asphalt cap in the vicinity of the Treatment Area. Areas surrounding the Treatment Area include asphalt and/or concrete surfaces consisting of existing parking lots and concrete slab foundations. The asphalt cap will be inspected as part of on-going maintenance and monitoring activities to ensure the integrity of the cap. Monitoring and maintenance activities are discussed in Section 3.0.

2.2 Permanent Markers

The Environmental Covenant mandates that the Property be fitted with marker(s) identifying the Property as a "restricted area". A granite marker will be placed in the locations shown on **Figure 2**. An example of the permanent marker is provided in **Appendix B**.

2.3 Performance Monitoring

There are 21 monitoring wells on the Property (MW-1A/C, MW-3A/B, MW-7B/C, MW-8A/B/C, MW-9A/B/C, MW-10A/B/C, MW-11A/B/C, MW-12A, MW-14A, and MW-17A). Consistent with on-going groundwater investigations, supplemental groundwater monitoring will be completed down gradient of the Type 5 soil restricted use area to assess any changes in groundwater conditions in response to soil remediation. The monitoring wells included in this evaluation are presented in the table below.

Monitoring Well ID	Water Zone*
MW-3A, MW-8A, MW-9A, MW-10A, MW-11A	Upper Residuum
MW-3B, MW-8B, MW-9B, MW-10B, MW-11B	Lower Residuum
MW-8C, MW-9C, MW-10C, MW-11C	Bedrock

^{*}Upper Residuum is generally screened between 20 to 40 feet below grade

The proposed schedule for groundwater monitoring in the vicinity of soil remediation includes a minimum of semi-annual monitoring for a period of two years. Groundwater sampling will be performed using low-flow sampling procedures in accordance with the Georgia EPD and USEPA Region 4 guidance documents. Groundwater samples will be analyzed for VOCs using USEPA Method 8260 at TestAmerica in Savannah, Georgia.

Property monitoring wells will be inspected as part of on-going maintenance and monitoring activities. Monitoring and maintenance activities are discussed in Section 3.0.

^{*}Lower Residuum is generally screened between 40 to 60 feet below grade

^{*}Bedrock is generally screened between 70 to 90 feet below grade

3.0 MAINTENANCE AND INSPECTION PLANS

This section of the M&M plan describes the methods, procedures, and processes that must be used to inspect and maintain the engineering controls at the Property. Use of the Property must not damage the integrity of the asphalt and/or concrete cap, or interfere with other engineering controls.

When intrusive activities are required in the Type 5 area, any extracted, impacted soil should be managed in accordance with all applicable local, state and federal rules and regulations governing the management of such material. Intrusive activities must be performed by personnel with appropriate HAZWOPER training per OSHA's Hazardous Waste Operations and Emergency Response Standard 29 CFR 1910.120, and the work must be performed in accordance with a Health and Safety Plan prepared by a qualified safety professional. Contaminated excavated soil in this area should not be placed back into the excavation, but be properly characterized for disposal and transported and disposed of at an appropriate disposal facility. The excavation should be backfilled with clean surficial soil or fill material and recapped with an impervious surface.

Maintenance and inspection of the Property must be performed by person(s) experienced in the maintenance and inspection of the engineering controls at the Property through both professional training and educational experience sufficient to evaluate the condition of the Property as it relates to the requirements set forth below. Minimum experience requires the inspector be a Georgia certified Professional Engineer or Professional Geologist.

Maintenance and inspection activity documentation includes the Property Inspection Log Form and Property Maintenance Record Form. Inspection logs include the date of the inspection, name of the inspector(s), component inspected, weather conditions, condition of the item inspected, notation of any damages requiring attention and indicate if the noted damage would be classified as Major Damage. Maintenance records include the dates repairs were initiated and completed, and the name of the person recording the information. Comments describing the severity of the damage (i.e., major) must also be noted on the maintenance record along with a description of the repairs. A copy of the inspection and maintenance forms are in **Appendix C**.

3.1 Asphalt and/or Concrete Cap

It is necessary to maintain the integrity and effectiveness of the asphalt and/or concrete cap to avoid cracks extending through the depth of the asphalt and/or concrete cap; and/or failure of coal tar emulsion asphalt seal such that surface water comes in contact with contaminated soil ("Major Damage"), including making repairs as necessary. The asphalt and/or concrete cap must be inspected every year. The inspection must evaluate the asphalt and/or concrete cap to ensure adequate quantity and quality of the asphalt and/or concrete cap to correct excessive settling and other events and to minimize the likelihood of run on and run off causing material surface water infiltration. Positive drainage must be maintained across the asphalt and/or concrete cap to prevent ponding. The results of the inspection must be recorded on the Property Inspection Log Form in **Appendix C**. All maintenance of the cap must be documented in a logbook and on Property Maintenance Record Form in **Appendix C**. If Major Damage is noted, repairs must be completed within sixty (60) days of discovery. All other items requiring repair must be completed within ninety (90) days of discovery. Repairs must be made in accordance with the good engineering practices and must be conducted by qualified personnel.

3.2 Permanent Markers

The structural integrity of the granite marker must be maintained to avoid crushed, broken, or defaced markers making markers unreadable; markers removed from the Property; and/or damage to asphalt or concrete, such that the marker can be removed ("Major Damage"). The granite marker must be inspected

every calendar year. The results of the inspection must be recorded on the Property Inspection Log Form in **Appendix C**. All maintenance must be documented in a logbook and on Property Maintenance Record Form in **Appendix C**. If Major Damage is noted, repairs must be completed within sixty (60) days of discovery. All other items requiring repair must be completed within ninety (90) days of discovery. Repairs must be made in accordance with good engineering practices and must be conducted by qualified personnel.

3.3 Groundwater Monitoring Wells

The groundwater monitoring wells at the Property must be maintained and inspected annually. The wells must be visually inspected for signs of grout or concrete stress or failure, and the watertight locking caps must be inspected for cracked or torn rubber seals. The results of the inspection must be recorded on the Property Inspection Log Form in **Appendix C**. Damage to the locks, wells, and well labels could result from vandalism or weathering. Any damage of the groundwater-monitoring network must be repaired. If locks have rusted and do not function properly, they must be replaced. All wells must remain securely locked. The following conditions are considered Major Damage:

- Damaged well vault or vault cover
- Damaged well cap
- Damaged well casing inside well
- Erosion undermining concrete pad around well
- Damage or cracking of concrete pad around well

If Major Damage is noted, repairs must be completed within sixty (60) days of discovery. All other items requiring repair must be completed within ninety (90) days of discovery. Repairs must be made in accordance with good engineering practices and must be conducted by qualified personnel. All maintenance must be documented in a logbook and on Property Maintenance Record Form in **Appendix C**.

4.0 PLANNED USES OF THE PROPERTY

The Property Owner (Owner) will ensure that any use of the Property preserves the integrity and effectiveness of the cap, and remain protective of human health and the environment. These requirements are imposed through the Environmental Covenant filing that provides, among other things, that the Property shall only be used for non-residential purposes. The Owner will inspect/monitor the Property annually to ensure the use of the Property remains in compliance with the Environmental Covenant restrictions. Use of the Property will remain non-residential unless a change in use is approved by the Director of EPD.

- The inspection will verify that groundwater is not being used drinking water or any other non-remedial purposes.
- The inspection will verify that the Property is being used by owners, tenants, and other occupants for non-residential purposes only.
- The inspection will verify that all lease agreements, and other agreements concerning the use of the Property, including contracts and informal agreements, must be reviewed to ensure they restrict occupants to non-residential use of the Property.

The Owner will summarize the results of the inspection in a Property use statement that will be maintained in its M&M plan records and submitted to EPD on an annual basis. The Owner will ensure that the any future changes in use of the Property that impact the engineering controls will be submitted for approval to the EPD and will not commence until approved by EPD in accordance with Paragraph 2 of the Environmental Covenant (i.e., Notice). The Owner will cause the M&M Plan to be reviewed and revised as appropriate. If it is determined the M&M Plan must be revised, the Owner will submit the revised M&M Plan to EPD for review and approval at least sixty (60) days prior to the proposed change in use, but will not permit that change of use until receipt of EPD's approval.

The asphalt and/or concrete cap is designed and will be maintained to have a minimum of two (2) inches of asphalt and/or concrete cover to minimize the infiltration of surface water into the contaminated soils that remain on the Property. The Owner may permit the cap be penetrated in order to perform work necessary to implement corrective action; perform additional remediation; install, maintain, repair or replace utilities, structures and engineering controls; or for any other reason approved by EPD. All such activities will be performed in a manner to minimize the release or exposure to the regulated substances under the cap, in accordance with this M&M Plan.

5.0 REPORTING

Pursuant to the Environmental Covenant, Section 5 (Periodic Reporting), the Owner shall submit to EPD an Annual Report including, but not limited to maintenance and inspection activities, certification of non-residential use of the Property, and documentation stating whether or not the activity and use limitations at the Property comply with the Environmental Covenant established for the Property. A copy of the Annual Report must be submitted to the following:

State of Georgia Department of Natural Resources Environmental Protection Division 2 Martin Luther King Jr. Drive, SE Suite 1456 East Tower Atlanta, GA 30334

5.1 Maintenance and Inspection Reports

The Owner must submit maintenance and inspection reports along with a cover letter to EPD annually by June 15th. The cover letter shall state the name, mailing address, telephone number, facsimile number, and e-mail of the person EPD should contact regarding the requirements associated with the Property must be provided to EPD.

The maintenance and inspection reports must include the following signed certifications:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate that information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

I certify that I am a qualified engineer or geologist who has received a baccalaureate or post-graduate degree in engineering, geology, or similar discipline, and have sufficient training and experience in designing and/or evaluating caps and installing and evaluating monitoring wells, as demonstrated by State registration and completion of accredited university courses, that enable me to make sound professional judgment regarding the effectiveness of engineering controls at this site. I also certify that this report meets the requirements set forth in the Monitoring and Maintenance Plan for the site. I further certify that this report was prepared by myself or by a subordinate working under my direction.

PE/PG Signature and Seal

5.2 Site Use, Activity, and Monitoring Property Evaluation Form

The Owner shall submit a Site Use, Activity, and Monitoring Property Evaluation Form along with a property use statement regarding compliance with the non-residential use requirements to EPD annually by June 15th together with the Annual Report. A copy of the Site Use, Activity, and Monitoring Property Evaluation Form is provided as **Appendix A**.

The property use statement must include the following signed certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate that information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations,

Authorized Signature

FIGURES

APPENDIX A

Environmental Covenant

APPENDIX B

Permanent Marker Monument

Monument will be inscribed with the following text:

RESTRICTED AREA SUBJECT TO ENVIRONMENTAL COVENANT CALL THE PROPERTY OWNERS OR THE GEORGIA ENVIRONMENTAL PROTECTION DIVISION PRIOR TO DIGGING OR COMMENCING ANY LAND DISTURBANCE ACTIVITY

APPENDIX C FORMS

SITE USE, ACTIVITY, AND MONITORING PROPERTY EVALUATION FORM

Tara Shopping Center 8600 Tara Blvd, Jonesboro, Georgia (Former Dry Cleaners 8564 Tara Boulevard)

Parcel:	13242D	B001	HSI No.	10798

Type	No.	Criteria Response	Yes	No
Property Use	1	Has the Property use changed, has construction work been implemented on the		
		Property, or have building permits been applied for?		
	1a	If yes to 1, was EPD notified at least 30 days in advance?		
	1b	If no to 1a, attach a written explanation.		
Exposure	2	Has subsurface site work been conducted in the areas of the Property where soil		
		and/or groundwater concentrations exceed site-specific risk reduction standards?		
	2a	If yes to 2, was EPD notified with 3 business days following the site work?		
	2b	Has groundwater extraction or use for non-remedial purposes occurred?		
	2c	If no to 2a or yes to 2b, attach a written explanation, including a description		
		regarding whether the requirements of the Environmental Covenant were adhered to.		
Engineering	3	Is the concrete/asphalt cover intact and of sufficient quality to prevent exposure		
Controls		to soil in the area of property designated for restricted use?.		
	3a	If no to 3, are corrective measures being taken? Notify EPD with 60 days of		
		identification of damaged concrete/asphalt with a plan and schedule to repair.		
		Please attached a written explanation.		
	3b	Have enclosed structures been installed on the Property or existing structures		
		modified in such a way as to change potential vapor intrusion assumptions?		
Permanent Markers	4	Are the permanent marker(s) that delineate the restricted areas in place and legible?		
Groundwater	5	Have monitoring wells been inspected and is the integrity of monitoring wells		
Monitoring		intact?		
Wells	5a	If no to 5, are corrective measures being taken? Notify EPD with 60 days of		
		identification of damaged wells with a plan and schedule to repair. Please		
		attached a written explanation.		
Property	6	Do all leases or other property instruments for the Property have the applicable		
Instruments		Environmental Covenant language inserted into them?		
	6a	If no to 5, attach a written explanation.		
Inspection	7	Date of inspection:		
	7a	Name of inspector:		
	7b	Photographs showing current land use, engineering controls, and permanent		
		markers (attached)		

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

NAME (Please type or print)	TITLE
SIGNATURE	DATE

PROPERTY INSPECTION LOG FORM

Tara Shopping Center 8600 Tara Blvd, Jonesboro, Georgia (Former Dry Cleaners 8564 Tara Boulevard) Parcel: 13242D B001 HSI No. 10798

Component	Condition of Component	Check if Major
Inspected		Damage
Asphalt and/or		
concrete cap		
Permanent Granite		
Marker(s)		
Groundwater		
Monitoring Wells		
MW-1A/C		
MW-3A/B		
MW-7B/C		
MW-8A/B/C		
MW-9A/B/C		
MW-10A/B/C		
MW-11A/B/C		
MW-12A		
MW-14A		
MW-17A		
Overall Property		
Condition		
Date of inspection:		
Name of inspector:		
Weather Conditions		
Photographs showing		
current land use,		
engineering controls,		
and permanent		
markers (attached)		

Certification:

I certify that I am a qualified engineer or geologist who has received a baccalaureate or post-graduate degree in engineering, geology, or similar discipline, and have sufficient training and experience in designing and/or evaluating caps and installing and evaluating monitoring wells, as demonstrated by State registration and completion of accredited university courses, that enable me to make sound professional judgment regarding the effectiveness of engineering controls at this site. I also certify that this report meets the requirements set forth in the Monitoring and Maintenance Plan for the site. I further certify that this report was prepared by myself or by a subordinate working under my direction.

PE/PG Signature and Seal	

PROPERTY MAINTENANCE RECORD FORM

Tara Shopping Center 8600 Tara Blvd, Jonesboro, Georgia (Former Dry Cleaners 8564 Tara Boulevard) Parcel: 13242D B001 HSI No. 10798

Component Inspected	Repair Date		Description of Repair	Inspector	Check if
Inspecteu	Start	Completed			Major Damage
Asphalt and/or concrete cap					
Permanent Granite Marker(s)					
Groundwater Manitoring Wells					
Monitoring Wells MW-1A/C					
MW-3A/B MW-7B/C					
MW-8A/B/C					
MW-9A/B/C MW-10A/B/C					
MW-10A/B/C MW-11A/B/C					
MW-12A MW-14A					
MW-14A MW-17A					
Overall Property Condition					
Photographs showing repairs				·	
Date of inspection:					
Name of inspector:					
Weather Conditions					
Comments:					

Certification:

I certify that I am a qualified engineer or geologist who has received a baccalaureate or post-graduate degree in engineering, geology, or similar discipline, and have sufficient training and experience in designing and/or evaluating caps and installing and evaluating monitoring wells, as demonstrated by State registration and completion of accredited university courses, that enable me to make sound professional judgment regarding the effectiveness of engineering controls at this site. I also certify that this report meets the requirements set forth in the Monitoring and Maintenance Plan for the site. I further certify that this report was prepared by myself or by a subordinate working under my direction.

my direction.	
PE/PG Signature and Seal	

ATTACHMENT E

Soil Boring and Monitoring Well Constructions Logs

To Be Supplemented